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The Phase-Shifting Point Diffraction Interéeneter

4.1 INTRODUCTION AND MOTIV ATION

Experience with the EUWDI yielded an understanding of the serious limitations of the cenven
tional point-difraction interferometer for high-accuracy measurements, and led ultimately to the develop
ment of a novel point difaction interferometer design capable of greatly improved throughput and pos
sessing the capacity for phase-shifting interferometrthePhase-Shifting Point Diffraction
Interfeometer(PS/PDI) (Medecki et al. 1996, Goldest al. 1997Tejnil et al. 1997)This chapter
describes the design and basic operational principles of the PSHDaddvantages of the PS/Pidé
described relative to other common-path Eidiérferometer designs.

High-accuracy wavefront measurement with the Conventional PDI (hereafter referred to as simply
PDI) is hindered by several factors. In the PDI design (Fig. 1(a)), the reference wavefront is generated by
diffraction from a sub-resolutioefelence pinholén a partially-transmitting membran€he test beam is
formed from the light that is transmitted through the membrane, containing the aberrations of the optic
under test. Since the reference beam is sampled from the test beam, there is no available means to intro
duce a controllable relative phase-shift between the two; therefore static fringe pattern analysis methods
must be usedlhe reliability of such analyses is limited in the presence of mid- and high-spatial frequen
cy variations of the test beam intensBurthermore, significant lateral displacements of the referenee pin
hole from focus, typically 10-25 tim@gNA (1-2 um in EUV interferometry), are required to generate
enough fringes for static fringe pattern analysis. Such displacement greatly decreases the ameunt of pin
hole-difracted light available for the reference wavefront. Consequeatimatch the intensities of the
two waves, and to provide good fringe contrast, the membranesigogicantlyattenuate the test wave
front; this reduces the overall throughput, dicefncy, of the interferometeSuch necessary beam attenu
ation may make alignment and measuremefficdif by pushing the required single-image exposure time

into the range of several minutes.

Conventional PDI Figure 1. Schematic representations of (a) the
Conventional Point Difaction Interferometer (PDI),

and (b)the closely related Phase-Shifting Point
Diffraction Interferometer (PS/PDI). Both systems
require coherent illumination of the optic under test.
The PDI uses a partially-transmitting membrane and a
sub-resolution pinhole to sample the aberrated test
beam and produce a reference wavefrbhe PS/PDI
utilizes a low-angle beamsplitter to divide the test
beam into multiple separate beams in the image plane.
One beam passes through @éaopen window in an
opaque image-plane membraAesecond beam is
focused onto a sub-resolution pinhole and produces a
reference wavefront.

a) I

Dl

b)
grating
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4.2 PS/PDI DESCRIPTION

In the PS/PDI designs, of which one example is shown in Fig. 1(b), a small-angle beamsplitter
(such as a coarse grating) is employed to separate the test and reference beams, forming multiple foci in
the image-plane. Using a two-pinhole spatial filter in the image-plane, two beams are selected: one beam
passes through a trwindowin an opague membrane, while another beam fiadied by a sub-resclu
tion refelence pinholglaced at the center of the focal spot.

This design overcomes several of the limitations of the conventionallRiDklating the grating
beamsplitter perpendicular to the grating ruling introduces a controllable relative phase-shift between the
test and reference wavefronts, facilitatptiase-shifting interf@mety (PSI), a powerful category of data
analysis techniquesdditionally, the centered reference pinhole and thgelaapen window lead to an
overall throughput increase of at least two orders of magnitude compared to the conventional PDI.

There are many ways in which the PS/PDI may be used, and several available variations on the basic
design. Besides the evpresent concern about the size of the reference pinhole, the grating beamsplitter
may be placed in several available locatidie position and pitch of the grating determine the separation
of the test and reference beams in the image-pldngeappropriate separation depends on the quality of the
optical system under test and on the desired mid-spatial frequency resolution of the interféFberetare
also advantages and disadvantages related to the selection of which dfabeedibrders becomes the test

and reference beanighese issues and others are addressed in the following sections.

4.3 CONFIGURATIONS OF THE PS/PDI

One central advantage of the PS/PDI over the PDI is that the reference pinhole is centered on the
brightest part of the focused illumination, greatly enhancing the amount of transmitted light in the refer
ence beam. In any configuration of the PS/PDI, one primary motivation is to deliver the highest available
flux to the reference pinhole. Since the pinhole acts as a spatialréitesving any aberration in the ref
erence beam, the primary quality of concern for the reference beam is simply its focused.itrigurgity
ciple, the beamsplitter may be placed in any available position ahead of the image-plane.

Figure 2(a) shows the conventional PDI alongside several configurations of the PS/PDI with a grating
beamsplitter and one using a glancing-incidence miFigures 2(b) and (c) show two similar configura
tionswith the grating placed either before or after the test dMien the wavefront division occurs ahead
of the test optic, the multiple beams will travel alondedént paths through the system; in extrerasges,
consideration must be given to the fact that apertures in the system may block all or part of the beams.

In any of the PS/PDI configurations, a choice must be made as to which beam is the test beam and
which beam is filtered to become the reference b@mse are called tHest-order refelenceand the
zeoth-oder refeenceconfigurations, denoting which beam becomes the reference. Sirtmeathesepara
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tion is typically small in thémage-plane, Conventional PDI
switching between the two configurations is

usually a trivial matterHowevey intensity anc

beam quality issues, discussed here and il

DI

Section 5.10, often motivate the use of ont
configuration over the other

Figure 2(d) shows thepsteam grating
configurationapplicable in circumstances
where the illuminating beam is of high qual
In this design, two similar two-pinhole spati

filters are used: one in the object plane, an

second in the image-plan& grating placed
.
ahead of the object pinholes separates the grating

verging test and reference beasmall &

object pinhole filters the test beam, guaran

. ) o o pinhole(s) testoptic ~ mask camera
ing a spatially coherent, spherical illuminati (object plane) (image plane)

f h f b h Figure 2.The PDI (a)s compared to four configurations of the
wavefront.The reference beam, however  pg/pp) (b-e). (b) and (e diferent only in the placement of

passes through a tg window in the object the grating beamsplittein configuration (d) the beam is split
upstream of the object pinhole, and similar window-plus-pin

plane and is filtered by the reference pinho hole masks are placed in both the object- and image-planes.
Configuration (eshows a dierent mechanism of beam-split

in the image plane. In bypassing the spatia ting, using a Lloyd mirror

filter pinhole in the object plane, the reference

beam reaches the image plane with much greater intensity than in the other PS/PDI configurations.

Although advantageous in this regard, the upstream grating configuration requires that the illuminating

beam incident on the object plane be ofisigitly high quality (i.e. nearly difaction-limited)to be well

separableThis requirement precludes its implementation in Edpylications where the illuminating

optics typically are not of nedliffraction-limited quality

Depending on the operational beam wavelength, there may be several available ways of achieving

the required wavefront divisioithe grating systems are convenient because a relative phase-shift

between any two difacted orders is induced by a simple lateral translation of one component, and is

therefore straightforward to implement and contiwolother system, shown in Fig. 2(e), is reminiscent of

Lloyd’'s mirror (Born andVolf 1980:262-263), where a glancing-incidence mirror is usddldahe illu-

minating beam onto itself over the entrance pupil. Here, thefNRe illuminating wavefront must be of

more than double the object-side MAthe systemThe implementation of phase-shifting in this configu

ration is problematic, if it is possible.
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4.4 COMPETING INTERFEROMETER DESIGNS
In addition to the two point-difaction interferometer designs used in this research, two other com
mon-path interferometer designs have been implemented fordptité testing: th&nife-Edgeor
Foucault Bst(Foucault 1858, 1859), and the grating-bdsatgral Shearing Interf@meter(LSI), or

Ronchi Interfeometer(Ronchi 1923, 1964), shown in Fig. 3.
One Example of the PS/PDI

The simple-to-perform Knife-Edge test
involves placing a high-quality opaque edge

the focus of the optical system under test. By

blocking some of the aberrated rays, the resi Knife-Edge (Foucault)

tant farfield intensity pattern reveals the slop .
of the wavefrontThis test was successfully ) W
employed in the alignment of an EWBthwarz knife-edge

schild objective (Ray-Chaudhuri 1994). For ~ Grating LSI (Ronchi)

high-accuracy applications, the advantages ¢ F )
the Foucault test in simplicitgensitivity and ©) I>I<):.><
grating

high-eficiency are outweighed by the tiuity Figure 3.Schematic drawings of the PS/PDI and two common-
in performing accurate analysis of the data. path interferometers that have been used in Et&/ferometry

The grating-based LSI is another test convenient because of its relative sinTlisiiyterferome
ter design has also been used to test3¢hwarzschild objectives identical in design to those under-inves
tigation with the PS/PDI (Ray-Chaudhuri 199V¥0od et al. 1997 coarse grating is placed near the focus
of the optic under testhe grating divides the beam into multiple, overlapping orders whicshesed
angularly in the direction perpendicular to the grating rulings. In a tygiesring interfesmeter the
interference ofwo slightly-displaced overlapping beams reveals the wavefront slope along the direction of
the shearHere, analysis is complicated by the presence of multiple overlapping Gd@shear angle is
determined by the grating pitch; the important parameter is the ratio of the shear angle toTthe NA.
amount of shear dictates the slope of the measured wavefront, and thergédyedietermines the sensitiv
ity of the technique. Using grating translation to induce phase-shifting into the measurements, wavefront
slope data is gathered along two shear directions, and the two separate measurements must be reconciled
reconstruct the wavefroralthough the success of this technique has been demonstrated, its applicability to
high accuracy wavefront measurement is still under investigation.

Both of these interferometer designs have advantages over the F8¢PBI:eficiency, because a
second spatial-filter pinhole is not used, and ease of alignment, because the placement of a tiny pinhole

onto the beam focus is unnecessahgere are fewer critical components and stages, and those-compo
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nents are easier to obtakcknowledging these advantages, howettee PS/PDI design has many posi

tive attributes not possessed by the other two. In generating a single reference wavefront by pinhole dif
fraction, extremely high accuracies may be achieVhd.interference data that is collected enables mea
surement of the wavefront itself, not the wavefront slope, so analysis is more straightforward and uncer
tainties are greatly reduced. Because of the high-brightness synchrotron source in use for BsFIV
experiments, the relatively lowerfiefency of the PS/PDI has not presented any significant experimental

disadvantage.

4.5 INTENSITY AND EFFICIENCY CONSIDERATIONS

The relative dfciencies of the PDI and PS/PDI configurations vary widehis issue may be of
foremost concern in circumstances where the available intensity of coherent illumination is Tilmited.
efficiency dictates how much time is required to conduct interferometric measurements. Here, to illustrate
this variation, a few simplified assumptions about the loss mechanisms are applied to a side-by-side com
parison of the dferent point difraction interferometer configurationBhe relative dfciencies of the
PS/PDI, the Knife-Edg&est, and the LSI are also compared.

The EUVPS/PDI, configured for the testing of ax1Bchwarzschild objective as described in this
thesis, will serve as a model for this exercise. Experimental characteristics of the synchrotron beamline
source and several of the interferomateomponents are applied hérbe inherent diciency of the test
optic will affect each of these common-path interferometers in the same way and is therefore neglected in
this discussion.

The object pinhole is illuminated by a beam of giaal quality forming a focal spot of approxi
mately 50pm? area (at 0.008 NAA 0.54um-diameter object pinhole transmits approximately 1/200th of
the incident illuminationAssume in this discussion that for high-quality optics, the image-plane reference
pinholes transmit 1/10th of the incident illumination; also assume that geaerdowpinholes of the
PS/PDI have 100% transmissidiihen aberrated optical systems are tested, the size of the focal spot
increases and transmission through the reference pinhole is re@ibisedoes not &kct the eficiencies
of the Knife-Edge or LSI test, butstgnificantlyaffects the assumptions made here about transmission
through the reference pinhole.

Assume for simplicity that the transmission gratings are binary: alternating opaque and transparent
stripes of 1:1 line-to-space ratio. Phase-gratings and gratings with a line-to-space ratio other than 1:1
could be used to improve throughput or to match the relative intensities of the test and reference beams;
but in this example, only the simple grating will be considered. For such an ideal grating, the intensity
transmitted into the zeroth-order beam is 1/4, and the intensity in one of the the first-order beafns is 1/
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(A good rule of thumb for such gratings is that the ratio of the intensities of the first order to the zeroth
order is 412 = 40%.) The gratings used in EUMterferometry are typically supported by a 1000-A sili
con-nitride membrane, with a transmission of THus the total intensity transmitted into the zeroth- and
first-orders is 1/16, and 11 = 1/40 respectively

Regarding the conventional PDI, assume for example that 20 fringes are desired, necessitating a
lateral displacement of the reference pinhole by approximatelyNIA. If the area of this displaced pin
hole is one-quarter of the centfaty disk area (a desirable size), then the amount of light transmitted

through this pinhole in a high-quality optical system can be on the orderab®®. To balance the

Conventional PDI
1/200 le-6 & 1le-6

1/2x106

1/200 1/200
a) : | ‘MF l
1/2x108
PS/PDI: grating after optic
1200 first-order reference
1/20 01/80001/8><104
1/200
fi rst--order referenc 1/3200 1/3200
1/200 1/10,1
1/16, zeroth-order reference
- 1/40 1/8000 1/8000
: 1/200
C) I ‘MF l
zeroth-order reference 1/3200,/3 210t
PS/PDI: grating before optic
1/200 1, 1/10 )
- 1/16, first-order reference
l/:40 1 1/200; 1/8000 1/8000 I1/8><104
d) ‘H :
"1/3200 1/3200  1/3200

first-order referenc

1/200 1/10,1
- zeroth-order reference
! 1 1 /2005 1/8000 1/8000 \ 1/8000
[ f
1/3200 1/3200  1/3.2<10%

zeroth-order reference

PS/PDI: upstream grating
1/200, 1

1/40, n
1/16

1,1/10

f)

‘1/40l 1/40 . 1/40 I 1/400.

1/16  1/320 /320 1/320

Figure 4.An efficiency comparison of the dérent point difraction interferometer designs. On the left, the approxi

mate eficiency of each element is showfhe eficiency of the optic itself, the same in all configurations, is omitted.

On the right are shown the approximate integrated intensities of the test and reference beams as they propagate
through the interferometerghe first-order reference and the zeroth-order reference configurations are also compared:
in (b) and (c), and in (d) and (d)his side-by-side comparison reveals tHeehcy advantages of some configura

tions over others. Numbers are givermable 1.
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two illuminating beams, the transmission of the semi-transparent membrane must be of this same order of
magnitude. In practice, it is possible that an optic withdanid-spatial-frequency errors may scatter

more radiation away from the center and into the vicinity of the displaced pinhole. Furthermore, if the ref
erence pinhole is lger than it should be, the flux transmitted into the reference beam may be closer to

104 than to 16P.

Figure 4 compares of thefiefency of each PS/PDI design. On the left are schematic representa
tions of interferometeré&bove each of the essential components, the approxinfatermties (photons
outversus photon®) used in the calculations are shown. On the right are representations of the-integrat
ed test and reference beam intensities in each segment of the interferorhetersre several important
values to consideThese require the following definition: the test and reference beams combine to form a
stationary intensityand amodulated intensitthat can be represented as

| = Istationay * Imodulated®0S (@8]

with @ as the arbitrary optical path fiifence in radiang.his and the definition of fringe contrast are

Table 1.Comparison of the relative intensities in six poinfrddtion interferometer configuratioriBhe station
ary intensity is the average intensity in the interference pattern, while the modulated intensity describes the half-
height of the fringes. Contrast is the ratio of these two intenditieseficiency comparison is based on the
ratios of the modulated intensities among thieht configurations shown. Intensity magnitudes are given fela
tive to the illuminating beam upstream of the object pinhole, neglectindfitiensly of the test optic.

Liationary — lmodulated  fringe  relative

Schematic [x10-6] [x10-6] contrast efficiency
Conventional PDI
- | [ |
a) : ' 1 1 100%  8x10°3
PS/PDI: grating after optic
- | H
b) I == 325 125 38% 1
first-order reference
o 3
) : _ 156 125 80% 1
zeroth-order referénce
PS/PDI: grating before optic
- . A
d) , : , 325 125 38% 1
first-order reference
" =2
e) I : 156 125 80% 1

zeroth-order reference
PS/PDI; upstream grating

_H B
f) & i 5625 5590 99% 45
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given inAppendix 5. (Notebecause the two interfering beams travel with the samegéivee angles and

fully overlap, the termstensityandflux are used interchangeably in this discussidhg stationary

intensity represents the average amount of light recorded in the interference pattern, while the modulated
intensity describes the intenshtgightof the interference fringes. 100% contrast is achieved when the two
intensities have equal magnitude.

One significant advantage of the PS/PDI revealetabie 1 is that the PS/PDI has over 100 times
greater dfciency than the PDI. Comparison of the first-order and zeroth-order reference configurations
produces two interesting results. First, thiicieincy of the first-order reference configuration is twice as
high because the brighter zeroth-order beam is unattenuated in the image-plane. Second, the modulated
intensity isthe samen the two configurationsThis result is due to the fact that the modulated intensity
comes from the cross-product of the two intensities, and is proportional to the geometric mean. No matter
which of the two beams is attenuated by the spatial filtering, the geometric mean is the same. Having the
same modulated intensity in the two configurations, the one with lower stationary intensity will produce
higher fringe contrast — indeed, the contrast is twice as high in the zeroth-order reference configuration.

Another result of this comparison is the observation that the upstream grating configuration is 45 times
more eficient than the configuration of the PS/PDI used for experiments. Because no object-plane spatial fil
tering is performed on the reference beam, to avoid beam overlap this configuration needs a very high-quality

PS/PDI: grating before optic
1/200 1, 1/10

- 1/16,
1/40

first-order reference

1 1/200, 1/8000 1/8000 Il/8><104l

first-order referenc "1/3200 1/3200 1/3200
1/200 1/10, 1
n zeroth-order referenc
. 1 1/8000 1/8000 1/8000
| ] |
|

1/200;

zeroth-order reference 1/3200 173200  y/3.2<104

Knife-Edge Test
1/200

1/2

1 1/200 1/200 _ 1/400

knife-edge

LSI
1/200

B 18
1 1/200 1/200 . :1/1600
—f—71_|] §>< s iy b
grating )

Figure 5.A comparison of the @€iencies of the PS/PDI and two non-pointfdittion interferometer designs. (a)
through (c) show the approximatdigEncy of each element, neglecting the optic itself. Schematit¢br)gh (f)
separately model the approximate integrated intensities of the test and reference beams as they propagate.
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Table 2.Comparison of the relative intensities of three interferometer deSigasntensity magnitudgs
are given relative to the unfiltered illuminating beam, neglecting fizéeaty of the test optic.

|stationary Imodulated fringe relative

Schematic [x109] [x109] contrast efficiency
PS/PDI
: A
a) = i 325 125 38% 1
first-order reference
" 2
b) ' : 156 125 80% 1
zeroth-order reference
Knife-edge
5000 5000 100% 40
1250 1250 100% 10

illuminating beam. If the reference beam were not of high qutiiy the attenuation of the image-plane pin
hole would be much greater and this configuration will have compardiblerefy to the others.
4.4.1Comparison with Other Interferometer Designs

In Fig. 5 andTlable 2, an diciency comparison is made between the PS/PDI, the Knife-Edge test, and
the grating-based LSI. For a given application, it would appear that there is a necessary lretshe=eh
efficiency and accuracWWhen implemented experimentaltiie eficiency advantages of the LSI design may
be outweighed by the longer time required for analysis ag@ramncertainties in the measuremeitse
time saved by the predicted factifrten reduction in the single-image LS| exposure time may be undone by

the increased analysis time and the need to record more exposures than in the PS/PDI scheme.

4.6 CHOOSING THE OPTIMAL PINHOLE SIZE

Selecting the optimal pinhole diameter for a given application of the PS/PDI requires the balancing
of several opposing conceridie desire for a high degree of spatial filtering and a reference wave of uni
form intensity motivates the use of the smallest available pinhole. Hovtlegentensity of the reference
wave is critical to achieving fringes of good contrast, a vital aspect of measurement precision. Based on a
simple scalar difaction model, this section outlines two methods for determining the optimal pinhole size
for a given application, as applied to the study of Edystems with 0.08 or 0.1 NA. Until such time as
the results from a more detailed analysis of Ghifvhole difraction (such as that presented in Chapter 2)
are readily available, these two methods provide approximate results and illustrate important physical
effects that require future study
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Figure 6.A simple model of the dependence of the fringe contrast on the pinhole didvasttt on “Airy pattern”
diffraction from a circular reference pinhole at 13.4 nm wavelength. Given the relative strengths of the test and refer
ence beams and the transmitting properties of the reference pinhole, the contrast dependence on pinhole diameter wil
follow one of the labeled contours from the graphs. For example, if a measured 100-nm reference pinhole produces
20% fringe contrast at the center of the interferogram, following contour “E” the fringe contrast will be 12% at the
edge of the 0.08 NAnd 9% at the edge of 0.1 NA. If a 50-nm pinhole were placed in this same system, then the
expected fringe contrast would drop to 5.8%4he centerd.4% at 0.08 NAwnd 4.2% at 0.1 NA.
4.6.1ReferenceWave Uniformity

When the pinholes are smaller than the central lobe of the focal pattern of an optical system under
test, the amplitude of the field transmitted through a pinhole should be roughly proportional to the pinhole
areaAlthough this simple model neglects the complicated attenuatiegtiebf high-aspect-ratio, highly
absorptive pinholes on the order of a few wavelengths in dianitetell serve as a good starting point
for these calculationgo keep the model simple and useful, assume circular pinholes in opagde mem
branes, and scalar ftdction of ideal Airy-like reference wavedVith d as the pinhole diametehe dif

fracted field amplitudd is

0 (4 kdsine)

E(d,8) = Ad?
? (Lkdsine)

O

®3)

rrrir

A'is a constant multiplier dependent on the characteristics of the pinhole and on the relative strengths of
the test and reference beams. If we define the amplitude of the test wave in the plane of the detector as 1,
thenA is on the order of #2. Yet A is an experimental parameter and cannot be known ahead of time.

Using this simplified model, the intensityf the interfering test and reference beams is
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, 2
| =|e? + E[" =1+|Ef + 2E|coso, 4)

where@ represents the phase of the test wavefront plus a significant PS/PDI spatial carrier fréwency
spatial carrier frequency typically introduces ayéanumber of fringes, and the resultant field varies from
its maximum to its minimum value over a short distafite fringe contrast is defined (Appendix 5) as

_ 2|
1+[EP

(%)

When the intensities of the test and reference beams are matched, the contrast is one.

One goal in selecting a pinhole is to have high contrast across the entifendé&surement. For
several values of the parameferig. 6 shows the fringe contrast at the center of the interferogram and at
the maximum polar angles within numerical apertures of 0.08 anditéeXcontrast is calculated from
Eqgns. (3) and (5)T'he non-uniformity in the difacted reference wave causes a greater contrast variation
from the lage pinholes than from the small pinhol€ke corresponding labeled contours in the three
graphs represent the same values of the parameter
4.6.2A SimpleApproach to Pinhole Spatial Filtering Considerations

Determining the optimal reference pinhole size for a given PDI or PS/PDI application is a daunting
task theoreticallyand a laborious task experimentafiandoning the level of detail used in thEM-
PESTsimulations of Chapter 2, a simple approach to this problem proves useful for assessing the level of
spatial filtering produced by dérent pinhole sizes in the presence of aberrated test beams. Based only on
Kirchoff diffraction from an idealized opaque planar screen, this study gives insight into the troublesome
problems associated with filtering astigmatic aberrations.

In order to study the isolatedfedts of individual low-ordered aberrations, an initial 0.08 (&
erencewavefront is given varying aberration magnitudes composed of a single low-ordered aberration
component at a time. For this mathematical study (similar to studies by SangHun Lee), ideal circular pin
holes of varying diameter are placed precisely at the center of the focal pattern produced by an optical
system operating at 13.4 nm wavelength. In approximation to the Kitohwfidary conditions, the sim
ple discrete Fourigiransform (DFT)s used to mathematically propagate the scalar electric field
(Sections 2.3 andl113.1). On propagation to the detector affiield, the pinhole field produces the refer
ence wavefrontA wavefront-phase analysis of the reference wave is performed within 0.08 NA, and the
contributions of defocus, astigmatism, coma, and spherical aberration are idehgified.pinhole size is
varied, the diracted reference wavefront is studied within 0.08 NA. Displacement of the pinhole from
the position of best-focus is not considered here.

This study is limited to the case where the pinhole is centered in the focal pattern. Experimentally
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Figure 7.A simple study of pinhole spatial filtering designed to assess the degree of filtering producéereytdif
circular pinholes sizes in the presence of varying degrees of primary wavefront aberrations. Calculations are per
formed for a 0.08 NAvptical system operating at 13.4 nm wavelength. Defocus, astigmatism, coma, and spherical
aberration are investigatethe abscissa in each plot is given in RMS wavefront displacement of the single aberration
component being investigatethe RMS wavefront displacement of thefidi€ted wave is given.

in the PS/PDI, every f&frt is made to center the pinhole in order to maximize the intensity transmitted
into the reference wav@&his situation is very diérent from the PDI, in which the pinhole is significantly
displaced from the center of the pattern in order to produce an analyzable interference pattern.

Figure 7 contains the results of this studgre, as the RMS aberration magnitudesraneased,
the pinhole diameters required to produce a reference wavefront with an arbitrarily small RMS-displace
ment (such a&/100)decease Of the four primary aberrations studied, astigmatism is by far the most trou

blesome, as it is the mostfititilt aberration to spatially filtehis property is born-out by the experimen
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tal observations that astigmatism creates the greatest uncertainty in the measurements (Chapters 3, 7, and
8). According to this simple model, in the presence of 0.1 waves RMS of astigmatism, the pinhole size
required to filter the aberrations down to 0.03 waw¢33) is L4 nm, to filter down to 0.01 waves/{00)

is 89 nm; and to filter down to 0.003 wava#3@3) is 67 nm.

This simple study leads to two important conclusions. First, the optimal pinhole size to achieve a
desired reference wavefront quality depends strongly on the aberrations present in the system. Second,
astigmatism ishe most dificult aberration to filterThe measured astigmatism in sub-aperfucé the
Schwarzschild objective examined in this thesis is 0.42 wave®i0\0856 waves RMS (see Chapter 7).
According to the simple calculation shown in Fig. 7, a sub-90-nm pinhole is required to filter this astig
matism magnitude to below 0.01 waves RMS in the reference beam. By comparison, coma and spherical
aberration magnitudes muchdar than this are easily filtered by considerablgéampinholes.

Because of its critical importance, more research in the area ofpiEibdle difraction and spatial
filtering is certainly required. Both detailed and simple calculations should support the experimental
research so that a greater understanding of the pinhole size requirements of high-accuracy applications
will be known.With the recent availability of pinholes from well-controlled pinhole fabrication processes
at this small scale (fabricated by EAkderson) and the continued measurement of optical systems of

various wavefront qualitymportant empirical data will be gathered.
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5.1 OVERVIEW

In the pursuit of the highest achievable accurddyg important to consider all elements of the-sys
tem, including the system geometag potential sources of systematic erfdhss chapter is devoted to
mathematical investigations of each of the PS/PDI components with the goal of identifying the most sig
nificant sources of systematic errArvery general approach is adopted so that this discussion may be
applied to the design of interferometers for the measurement of arbitrary optical sygtesresappropti
ate, the results of these sections are applied to the specific configurations usedimeedkbometry of
lithographic opticsThese EUVcalculations are highlighted at the end of each section and summarized at
the end of this chaptelRandom error sources and issues relating to inadequate pinhole spatial filtering are

not covered in this chapter

Figure 1. grating gratlng geometric _ detector
. aberratlons 5.8 coma, 5.9 coma, 5.5 misalignment, 5.6
coordinate
systems, 5.2

1 x
X
Z

source detector

grating placement

bandwidth, 5.4 (shear), 5.7 distortion, 5.12
spatial-frequenc window shape
pissues % Y variations, 5p11

Interferometry Issues
Chapter 2 Reference Wavefront Quality
Chapter 4 PS/PDI Description

Interferogram Analysis
Chapters 11-12Phase Retrieval

Chapter 13
Chapter 15

Phase Unwrapping
Wavefront Fitting

5.1.10utline

In low-NA configurations, a few definitions and formulae lead to simple mathematical descriptions
of the various componenfEhe predicted performance of an interferometer configuration can be judged
based on the magnitude of théeefs identified in this chapteFigure 1 enumerates the most significant
effects and indexes the sections of this thesis in which they are addressed.
5.1.2 System Parameters

There are at least three interferometer configurations of special interest here: badimdEUsible-

Table 1:Lithographic system parameters of inter@$tese numbers will be used for comparispn
throughout this chaptey investigation of systematicfe€ts. Particular attention is paid to the
EUV parameters as they pertain directly to experiments described in this thesis.

Parameter EUV Visible Deep UV
wavelengthA 13.4 nm 632.8 nm 193 nm
NA; ~0.08 ~0.08 ~0.6-0.7
magnification 4-10 4-10 4-10
A2NA .084um 3.96pum 0.16pum
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light measurements of an EUkhographic optic and, for comparison, a 193-nm-wavelength lithographic

system with NA> 0.6.Approximate system parameters for each are givdalite 1.

5.2 DEFINITION OF COORDINATE SYSTEMS

Mathematical descriptions of the interferometer are simplified by the introduction of several inter
related coordinate systems, individually appropriate feréifit regions or componenidhis section intre
duces three coordinasystems and the expressions that relate ttiemb-aboratory Systemthe Beam
Systemand theDetector System.

Common to all of the coordinate systems is thedfl#he beam in the region of interest, called the
local NA.The local NAis determined by the sizes of various apertures and pupils in the system and
describes the cone of rays that eventually reaches, or emanates from, an image or objEbtpeiate
the rays relevant to interferometric measurement of low spatial-frequency aberrations. In a reflective,
cylindrically symmetric optical system, is defined as the maximum half-angle within the system NA.

By definition,
NA =sina . 1)

Where the spherical beams are incident on planar surfaces normal to the certtralteaygent oft is a

useful quantityDefinet as

t=tana = NA

= ()
v1-NA

5.2.1The Laboratory System
The Cartesian system, baboratotry Coodinates shown in Fig. 2, defines points in 3-D space as

P(x, y 2. Thez-axis coincides with the central ray TheLaboratory Coordinates

of the interferometés testbeam; the origin of the

coordinates is defined as the center of curvature

the diveging (or conveging) spherical beanThis

point is typically determined by the position of a

pinhole spatial filter in either the object- or the

image-plane, or by the focal point of the interfero z

eter's test beam.

R=yx*+y?+2% . ©)
r=x?+y?. @ ©

Figure 2.TheLaboratory Coodinate Systerns based
on Cartesian or cylindrical coordinates using the-mea
surement units of the experimental syst&hme z-axis is
defined to be collinear with the central ray of test
beam, with the centaf-curvature as the origin.

Where spherical beams are incident on a planar

face, cylindrical coordinate systems have a maxi

63



Systematic Eors and Measwement Issues

Two equivalent representations of the sphe@EmCoordinates

O
Figure 3.The sphericaBeam Coalinate Systemases polar and azimuthal angles to represeangularposition
within the diveging or conveging spherical beani\n alternate representation of the same coordinate system defines
an angular position using arandy pair of polar anglesAgain, thez-axis is defined to be collinear with the central

ray of thetestbeam, with the center of beam curvature as the origin.

mum radiusry corresponding to rays at the anglérom the axis.
fy =ztana =2zt . (5)
5.2.2The Beam System
A spherical coordinate system, shown in Fig. 3, provides a more natural description of tpe diver

ing or conveging beams: for the optical systems of interest here, aberrations are described as departures
from an ideal, spherical wavefront. Based on the central ray of the test beam, we gefiii@@awithin
the beam using the polar and azimuthal andle@)( It will also be convenient to define a polar angle
vector, separated intg andy angular components:

0= (6, ey) = (6 cosq, 6 sin ). (6)
In some cases, this angular vector simplifies translation to the Cartesian Laboratory System. Other expres

sionsin this coordinate system reld@eo k, which is also used to represent the beam propagation direction:,
k= (kx,ky,kz) = (sin@cos@,sinBsing,cos), |k|=1. @)

2Ky O

GX’y = tan %E . (8)

Normalization of the polar angle relative to the local WifA simplify calculations in some caseghis

system is called theormalized Beam Codinates For this purpose, define a normalizatyley as

9)

<
[l
Qo
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TheDetector Coordinates

AY Ay Figure 4..The Detector
Coordinate Systeris used to
represent measurements

P P recorded on a planar detector
t/ ly 0 Both Cartesian and polar rep
. 'y © 1 © rgsgntations are usethe _ori
c X § § gin is taken to be the point of
‘—g_ intersection of the central ray
5 of the test beam and the detec
§ tor plane.
3
regular normalized
(0<r<ry) (0<p<1)

5.2.3The Detector System

The final coordinate system introduced here is the 2-D jp#tector Coodinates defined in the
plane of the detector and centered on the point of intersection of the central ray of the test beam with the
detector planeThe Detector Coordinate System is shown in Figh goint in the detector plane may be
represented in the units of the Laboratory frame, or by a corresponding\setridlizedDetector

Coordinatesutilizing a dimensionless radigsbased om.

r

p=E—. (20)
r(X
From Egns. (2) and (10) we also have the relationships,
r=ryp=tzp. (11)

The normalized coordinateg, () eventually become the coordinate system of the data analysis, which is

based on a unit circle representation of the systexit pupil.

5.3 NUMBER OF FRINGES
From the mathematical description of the PS/PDI arises a convenient rule of thumb useful for

determining the required position and pitch of a grating beamsplitter

Rule of Thumb: The number of fringes in the interferogram equals the number of
grating lines illuminated within the N&f the optical system.

Subiject to the fact that wavefront aberrations in the test optic cause curvature in the observed-fringe pat
terns, this rule is approximatén investigation of the origin of this rule leads to a description of how the
PS/PDI can be used with broadband illumination (Section 5.4).

Let a; andag be the maximum half-angles within the image-side and object-side numerical aper

tures NA and NA, respectively Constraining our discussion to one side of the optical system, in general
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Figure 5.A grating beam-splitter
is used to produce the test and
s reference beams of the PS/PDI.
The first-order difraction angle

0 is determined only by the grat
ing pitchd. The beam separation
in the image-plang depends on
0 and on the positionof the
grating with respect to focus.

sinfla=a
z

7

we have,

NA

J1-NAZ

Depending on the configurationjs defined as the distance from the grating to the object-plane or as the

NA =sina, and t=tana= (12) and (13)

distance from the grating to the image-plane.
For either an object-side or image-side grating (Chapter 4), the lateral width of the grating illumi
nated within the local NAs w, as shown in Fig 5.
w=27. (14)
Therefore for a given grating pitchthe number of grating lines illuminated is

w_2a
d d

Nlineﬁ -

(15)

When the grating is placed on the image-side, the cgimgebeam from the optical system forms a
series of real images corresponding to thieadifion orders of the gratinghe lateral separation of two
adjacent image-side fosifollows from the grating equation for the firstfdifcted ordei = d6 where® is
typically much smaller thaa.

y2)\
=70=— .
3 d

(16)
Givens;, the number of fringes within the Ni& readily calculated from the maximum path length
difference between the zeroth and the firdtalited orders. By symmetrihis maximum dierenceA is

twice the diference between the central rapd the rays at the angle

A, =5sina; =s NA, and A=27,, -~-%NA1 . (17) and (18)

The number of fringeBlyingesis equal to the path length fiifence in waves (units af.

2z 2z
zFNAi = — = Niipes, (19)

N =
fringes d

>|>

thereby justifying the rule of thumBhis number may also be written usiggxplicitly

2st;
Nfringes = NIin% = i - (20)

When the grating is placed on the object-side, the rule of thumb still applies. In this case, however
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the grating divides thdiverging beam, and each grating order besides the zeroth appears to originate from

a separate virtual object source. By analogy with Eq. (16), the separation of these virtual objects is

(21)

ZA
=z0=—.
% d

In principle, the separation of the real foci in the image-plane is equal to the separation of the virtual
objects, scaled by the magnification of the system.
§ =M. (22)
The relationship of the object-side and image-sideaNgles,
a;=a,/m, (23)
allows Eg. (20) to be written independent of the system magnification.

2st.  2s;t
Nfringesleinesz%: S;\)O' (24)

In the small-NArange where sia = tana a useful approximation for the number of fringes is
2 2
Nfringes: Nlines:TSNAﬁ :TSONAJ' (25)

In theupsteam grating configuratiofSection 4.3) the multiple object sources are real, and the same
rules apply
5.3.1Numbers

For a specified number of fringes.

10 mmy,
we can investigate the corresponding L J
= iy
image-plane beam separation by solvil % 1 mm, S 38 261
. . 5 \
for 5 in Equation (25): & ]
g 100 pm;
§= 0 o) £
= ) Keo) i
2NA 2 10 pmd
< E
ol 3
Figure 6 shows Eq. (26) plotted versus & ]
S 1umg
NA for three wavelengths of interesb E ;
achieve 40 fringes at 0.08 NAtheEUV, 0.1 um— - —
56 80901 4567891 2 3 45678
193-nm, and HeNe configurations ' numerical aperture (NA)

quires beam separations of 4, 60 Figure 6 The number of interferogram fringes depends on the wave
length, the image-plane beam separation, and the measurement NA.

pm, and 198um respectivelyForty For a wide range of numerical apertures, this figure shows the beam
separation required to produce a given number of fringese

fringes at 193 nm with 0.6 NAequires a experimentally relevant wavelengths are considered: EUV(13.4 nm),
deep UV(193 nm) and visible (632.8, HeN@he star indicates EUV

beam separation of 64m. numbers relevant to experiments conducted in this thesis.
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5.3 Summary
Beam Separation s/Nyjnge = A2t = 0.084um/fringe U Niinge/S = 2/A = 12 fringesim.

54WHITE-LIGHT CONFIGURATION AND BANDWIDTH

For the grating-based configurations of the PS/PDI, the rule of thumb presented in the previous
chapter equates the number of grating lines illuminated to the number of fringes obBeevizdt that
this rule is independent of the illumination wavelength leads to the conclusion that, aside from chromatic
aberrations (wavelength-dependerieefs) in the test optical system, the PS/PDI may be regarded as a
broad-bandinterferometerThis section describes the most important wavelength-depenéesit eff the
interferometerNote that this discussion addresses only an idefiladtibn-limited, achromatic optical
system under test.

Since the NAs a property of an optical system independent of wavelength, the number of grating
lines that fall within the NAs determined only by the geometRor a given wavelength, the number of

observed fringes is related to the image-plane beam sepagatiocording to Eq. (24):.

2st;
Nfringes = NIines = % ' (27)

Using N as a convenient system invariagtnay be written as

NA
~ A 28
S (28)

showing that the image-plane beam separation is proportional to the waveéldngpththe illumination is not
monochromatic, grating-difacted beams are focused tdfeliént lateral positions in the image-plambe

position of the zeroth-order focus does not depend on the grating pitch, and is thus not wavelength-dependent

a) ! b) c)

1
+15t* +15t +1°

O —— 0" —— +0”‘>I<

- i
1

1
no image-plane filter First-Order Referene Zeroth-Order Reference
configuration configuration
Figure 7.When a grating is used to separate the test beam, tteetie orders are fcted by the bandwidth of the
illumination. (a)Different wavelength components of the first-order beams are separated by a lateral displacement in
the image plane. (b) In the first-order reference configuration, the reference pinhole behaves as a mongchromator
selectively transmitting a portion of the bandwidth mofeatively than the rest. (#) small translation of the image-
plane spatial filter puts the system into the zeroth-order reference configuration, in which a much broader range of
wavelengths is transmitted.
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In the image-plane, the positive and negative first-order beams form foci on opposite sides of the
zeroth-order beamAs shown in Fig. 7, a simple lateral translation of the two-pinhole spatial filter allows
selection of either of the two first-order beams or of the zeroth-order as the reference or teEhésam.
two configurations are referred to as fhist-order refeenceand thezeoth-order refeenceconfigura
tions, respectivelyThese names indicate which beam is filtered by the reference pinhole. In the presence
of finite-bandwidth illumination, these two configurations do behave somewfexrtedifly Some advan
tages and disadvantages of these two similar arrangements are discussed in Section 5.8.

In the first-order reference configuration, the tiny reference pinhole serves as a monochromator by
geometrically selecting some wavelengths to pass through the pinhole fivieatsf than others. For this
to be true, howevethe test optic must be of nearlyfdittion-limited quality In the complementary
zeroth-order reference configuration, thgé&window transmits a range of wavelengths determined by the
window size and position. Hence, the range of recorded wavelength components migydre difthe
two configurations.

Due to the typically long time scale of measurement, relative to the frequency of the radiation, light
of different wavelengths addiscoheently. Therefore, if there are wavelength components present in
either the test or the reference beam but not in both, those components will contribute only to the unmod
ulated background intensity in the recorded ddtamodulatedefers to the recorded light that does not
contribute to the interference fringes.
5.4.1Effect of Bandwidth on the Measured Fringe Pattern

When using the PS/PDI with broad-band illumination, interpretation of the measured interference
fringe patterns may require careful consideration. Chromatic aberrations and geometrical considerations
must both be consideretihe relevant bandwidth herenstthe source bandwidth; strictly speaking, it is
only those wavelength components that reach the detector and are present in both the test and reference
beamsThese are the only wavelength components capable of producing interference fringes. For reasons
stated above, this restriction may exclude some components of the original source bandwidth.

One design consideration of the interferometer is thédrdiit wavelength components separated

Figure 8.The origin of interferogram chromatic-dependence in a
reflective achromatic system. For a particular wavelength compo
nent, the interferogram fringes reveal the optical pathrdiice
between two waves, measured in wavelengffith a mirror surface
height profileh(x) different fringe patterns will be observed for each
wavelength of measuremeithe surface depression shown in the
figure is one-half oh, yet is one-third oh,. Upon reflection the
aberration path length is doubléthus, these twavavelengths gen
erate diferent fringe patterns for the same aberration.
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by a grating placed before (on the object-side of) the optical system will travel alfargrdipaths
through the optical systenfihe significance of this &fct must be evaluated based on the illumination
bandwidth and the design on the test optical system.

If a range of wavelengths is present, then the measured interferogram will be an additive-combina
tion of the wavelength intensity components allowed to reach the detactoperfect optical system, the
pattern of equally-spaced, parallel interference fringes is the sarak ficavelengthsHowever in the
presence of aberrations, eagvelength component may contribute dedént, overlapping interference
pattern, thereby confusing measurement.

Even in the absence of true chromatic aberrations, geometfigetisedan contribute wavelength-
dependence to measurements. For example, consider a reflective optical system with a surface figure erro
of arbitrary depth (or height). Light reflected from the region of a depression travels a relatively longer
distance than the light in adjacent ar&dss situation is depicted in Fig. 8.

The significance of a given path-lengthfeience on the interference pattern is inherently wave
length-dependent. For each spectral component, the interference fringes represent contours of constant
path-length diierence, separated by one wavelengttus, for a given path-length fiifence, diferent
wavelengths will generate &fent fringe patterns. In the presence of finite bandwidth illumination, this
effect canblur a fringe pattern. Howevea special situation arises if the spectral intensity distribution is
symmetric about a central wavelength: the contrast is reduced, but the fringe positionsfactednaf
Such a situation only fects the signal-to-noise ratio of the wavefront measuremEnitscan be demaen
strated mathematically as follows.

The measured intensity is the sum of the intensity contributions from all of the available wavelengths.

Eg. (3) defines an intensity-weighting functis\) with units ofA-1, and an intensity functiod(r ;).
I(r) :_[dl (r;)\) :IW()\)J(I‘;)\)d)\ , (29)
A A

where Jw(A)dr =1. (30)
A

A general expression for a single wavelength compol{ed) is

4nh(r)C

J(r;A) = A+ Bcos% i +TE, (31)

where the vectok represents the spatial carrier frequency of the fringe pattern, and is invariant of wave
length.h(r) is the combined mirror figurerror as seen by a given ray in an arbitrary reflective optical
system.The path length of a particular ray is doubled upon reflection from a surface, as the light must

twice travel the distande
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Consider the addition of two @&frent closely-spaced wavelength componagtéA andA+AA

with A << A,
2I(rAe =N +1I(r A, +AN) = Ar)+3 B(r)cos% [F + )\4111_1(3 Eﬁ% B(r)cos% i +%E (32a)
o (o]
= A(r)+ B(r) cosgk [ + 4T)d\1(r) EposEnT(r) ;ﬁE (32b)
u o O 0O %o ol
O 4mh Ch(r) O Can CF
=Ar)+ B(r)cosmm+—)\ (r)%—gg—f)m 5 H E (32c)
a o [H 0% O E

In Eq. (32b), the wavelength-dependence is expanded to first-orderdn.thethe limit of narrow band
width AA or small aberrations(r) Eqns. (32a)o (32c)reduceto the intensity pattern of the central wave
length, as expectedhis fact leads to the illustration of an important result, worth elaboration.

The addition of two closely spaced and equally-weighted wavelength components
yields the same fringeattern as the central wavelength, with a reduction of fringe
modulation determined by the magnituden@f) andAA.

5.4.2Fringe Blurring in Symmetric Intensity Distributions

In the special case of symmetric intensity distributions we can derive a general form of the resul

tant fringe patternThe predicted reduction of the fringe modulation can be used as a criterion to set an

upper limit on the allowable bandwidth. Non-symmetric distributions may be represented by the addition

of a symmetric distribution with an asymmetric distribution. In this case, the following treatment would
apply to the symmetric part, and the asymmetric part would have to be addressed separately
When the wavelength distribution(A) is symmetric abowX,, pairs of intensity components within
the distribution add to re-create the pattern of the central wavelength. For a symmetric distribution,
w(Ao —AN) =w(A, +AA). (33)
The sum of a pair of intensities within the distribution integral of Eq. (29) will be

WA, = AA)I(r; A = AA) +w(A, +AN)J(r; A, +AM)

g
=2W(7\0+A)\)§A(r)+ B(r)coslé(le%o(r)% %?gg%‘%ﬁg% (34)

By symmetryand Eq. (34), we have

= [W(A)I(rA)dh = fw(Ag +AA)I(riA, +AN)d(AN) (352)

g%(m) (35b)

5

a
=2J W()\O+A)\)§A(r)+8(r)cosg(m+ % %E,g

o oan
0
0

O Ao %o )‘
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s 0 an o Lo mad
= Ar) B(r)cos%(m A, % EE,KEJW()\O M)QEE d(A)\)E (35¢)

This representation allows us to define a bandwidth-depefrifege blurring functionW(d) to simplify

this discussion,

W(8) = — [w(A, +A)\)E)\—E d(An). (36)

The dimensionless paramegethat describes theidth of the spectral intensity distribution will be defined

differently for diferent distribution models (Gaussian, top-hat, etc.). Continuing to simplify Eq. (35c),

I(r)=A(r)+ B(r)cosgcm +M%— E,hﬂgw(a)E (37a)
0 Ao B DM O E
1(r)=J(rin,) - B(r)cos%cl] +M%ﬂgw(6) : (37b)
0 Ao [ O

In Egns. (37a) and (37b), the bandwidth-dependent term acts to reduce the magnitude of the fringe modu
lation B without changing the positions of the inflection poifisrthermore, wheA(r) andB(r) are
slowly varying functions relative to the spatial period of the fringes, then the positions of the fringe maxi
ma and minima will match the monochromatic cas$wis in the presence of a symmetric spectral distrib
ution, the fringe contrast is merely reduced, ®fd) represents the fractional loss in fringe modulation.
5.4.3Determining W(J) for the Gaussian and dp-Hat Distributions

For quantitative results we investigate two spectral intensity distribution ma@alsssianand
top-hat The Gaussian distribution is defined by its full-width at half-maximum (FWHM), definég; as
the top-hat is defined simply by its full-wid8

5.4.3.1 Gaussian Distribution Consider a Gaussian distribution centered ahguwvith an RMS
width of A,o. In this definition,o is the dimensionless parameter describing the distribution width relative

to the central wavelength. Normalization requires that Eq. (30) must be satisfied.

wy(A, +AN) = J%m exp[—(gz\rz ] (38)

Solution of the integral in Eq. (36) yielwg(o).

wo?

3 (39)

W (0) =

As stated previous|y\, is defined diferently for each distribution shape; the definition may use any con

venient parameter that describes the distribution width. Often, a more convenient representation of the
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Figure 9.A plot of the fringe-blurring functiol(d) for the Gaussian and top-hat spectral distributions as a function of
the distribution widthsW(d) is a parameter that describes the reduction in fringe height that can be expected in PS/PDI
interferometry in the presence of a symmetric spectral distribution. Note that the two distribution widths are defined dif
ferently: this primarily accounts for the f&rence inMd). The two width definitions are illustrated in the inset graphs.

Table 2.Values of the fringe blurring functiot(d) for the Gaussian and the top-hat spectral intensity distributions,
and a selected distribution widtlds W describes the expected reduction in fringe contrast related to non-merochro
matic illumination of a reflective optical system. * is the measured bandwidth used imfderometry
0 Wy(Gaussian) W,(top-hat)

0.000 0.00 0.00

0.001* 2.22x 107 1.03x 107

0.002 8.90x 107 4.1 x 107

0.005 5.56x 106 2.57x 106

0.010 2.22x 10° 1.03x 10°

0.020 8.90% 10° 4.11 x 105

0.050 5.56x 104 2.57x 104

0.100 2.22x 103 1.03x 103

0.200 8.90x 103 411 %103

Gaussian distribution will be in terms of the full-width at half-maximum (FWHj¥ather tharo.
69 ando are related by a constant ci@ént. It is easily shown that
(FWHM)? =32 = (8In2)0” . (40)

Defining Wy using the FWHI\/Bg instead of the RMS widtts,

2
=5 e " 0.2225. (41)
5.4.3.2Top-Hat Distribution. In a similar manner as above, choose a normalized top-hat distribu
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tion centered abouwt, with a full-width Ad.

o1l 1
e AN <2A.D

(A +8A) = O e ; (42)
Ho |an>1a.3,

From Eq. (36) the fringe-blurring function is

52 _
96

w(s,) = 0.10352 , (43)

Selected values of the blurring-functia{d) from Fig. 9 are listed iffable 2. Even for significant band
widths, the magnitude of the blurring-function, shows that in the presence of mirror surface aberrations,

small on the scale of the central wavelength, the fringe modulation is not substantially reduced.

5.4 Summary

Bandwidth. Wy = 2.22x 107 @ 0.1% BW(Gaussian distribution). Fringe amplitude is
reduced by 2.2% 107 per wav@ of aberration at this bandwidth.

5.5 GEOMETRICAL COMA SYSTEMATIC ERROR

This section describes a systematic, geometric coma error introduced by the image-plane separatior
of the test and reference bearfisree methods for the removal of this error are proposed.

For several reasons, high-accuracy implementations of theFJ\And PS/PDI do not utilizes-
imagingopticsto image light from the exit pupil onto the detector plane. Such optics are common in most
conventional interferometer desigi$ie primary reasons for their absence is the unavailability of optical
elements of suitable quality and the fact that low#4V measurements def only localized décts from
diffraction.An important geometrical f&fct related to the absence of re-imaging optics causes a third-order
systematic error to be introduced. Experimental observation of faet bas been used as a verification of
system sensitivity (Section 8.9)he magnitude of this ffict depends linearly on the image-plane separa
tion of the test and reference beams, and tHastafboth the PDI and the PS/PDI configurations.

Essentiallythe test and reference beams are two dimgrspherical beams with a lateral disptace
ment of their centers-of-curvaturs they propagate toward the detector plane, the relative path-length
difference generates the interference pattern. Neglecting aberrations in the optical system, the pattern con
sists primarily of parallel, uniformly-spaced, straight fringes; but consideration of the path-lefagth dif
ence including terms out to third ordegveals a systematiomaof magnitude comparable with the sen
sitivity of the EUVPS/PDI interferometer

In Fig. 10, light from the two beams reaches a common point at the deféitihmut loss of gener
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ality, we take the displacement vecsdo lie along thex-axis. Setting the origin on one of the rays, the

path lengths are

R = V"‘xz + y2 + 72 , (44) P(x.y.2)
Ry

_ A2 2 2

Rz—\/(x s +y? + 22, 45)
‘ R

_ mxif oyl |, ox=stf |, oyef s

AR= Z\/“ 0,0 T 6,0 Z\/1+D >0 o 48 ] >z
image plane z detector plane

At this point it is convenient to define the following Figure 10.The description of systematic errors

begins with the path length tifence of the test and
reference beam centers to a point on the detddter
figure shows the beam separatand the image-to-
detectosplane distance.

dimensionless quantities

tu=x/z
H= y/z : (47)
5 = s/ 2 << max{u}, max{}

Now re-writeAR in term of the dimensionless variables.

AR=zy1+u? +v? - z\fl+(u —3)2+v2 . (48)

Using the binomial expansion, expand the square-roots keeping terms up to first-drdelyirviany

terms in the expansion cancel leaving

AR:Z&J%—%(UZ*‘Vz)Jr%(UZ+V2)2_W5:% (49)
1-{u”+v°)| -

To express this as a wavefront aberration observable in the data, it is convenient to use the normalized
cylindrical Detector Coadinate Syster{see Section 5.2hormal to thez-axis.

Et =tana, where NA =sina

= %V"uz +v2 0]0,1], within the system NA (50)
O

Hp=tan™(v/u), the azimuthal angle

The path-length diérence of interest may now be written as the product of radial and angular terms,

AR= zESt[l—%tzp2 +3t%p* _..-]pcos(p: Apcosqa. (51)

\“‘gl_tsz

Generalizing the directiosasq,, and replacing with s/z, AR becomes

AR= zét(l— 1t%p? + 3% - -)pcos(cp— 0) = Z—atpcos((p— 0) (52)

ll_tzpz

st
AR=st(1-1t%p? + 2t%p* —...)pcos(@-¢,) = ——=——pcos(p- @) . (53)
( 2 8 ) S( s) m S( s)
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beam separation detector
(displacement) coordinates tilt vector coma vector
y y ap ay
S P T C
o)
> x ® X a as

Figure 11. The description of several experimental quantities is facilitated by representation in pairs of coordinates.
The test and reference beam separation in the image plane may be represented by a sirg[€heetitband coma
components of the path lengthfdience have a convenient representation in a singleC vector defined from the
Zernike polynomial coditients @y, ay) and g, a;) respectivelySince they share the same radial dependence, and

differ only in the co8 or sirf angular dependence, these vector representations simplify many aspects of the analysis.

It will be useful to separate the angular dependence of Eqg. (53) into cosine and sine components as follows
AR= sI(l—%tzp2 +3t%p* —-~~)p(cos<pS cos@+sing,sing) . (54)

The first term in the expansion is the tilt that defines the fundamental fringe patternegative
sign of the third-order term in Eq. (54) shows that tliecebf the geometric coma isreductionof the
fringe period at the edges of the measurement. (This also may be understood that from the perspective
that at the edge of the field, a small change in angle results igea tdmange in position on the detector
than at the cent@rThe higherorder efects are always aligned parallel with tileterm (also the beam
separation), so there is no induced curvature of the fringes.

For a given optical system, the magnitude of thisatfdepends primarily on the image-plane sepa
ration of the test and reference beaf® bandwidth discussion of Section 5.4 showed that in the eonfig
uration where the beam from the firstfditted order is used as the test beanfierifit wavelength com
ponents are brought to flifent image-plane separations. From the combination of thesefettsett is
clear that attention to the chromatic dependence of the systematic coma may be necessary in some cases
5.5.1Representation of Zernike Pairs iné¢tor Notation

Further simplification of the path-length féifence expansion can be made by introducing a vector
notation for the pairs of Zernike terms that naturally separateirody-oriented component3he defi
nitions of the Zernike polynomials may be found in Chapter 14, and the Zernifieieaepair vector
notation is discussed in Section 14.3.1. Here, the relevant terms are diltyahécomacomponents.

Any wavefront aberration on an unobstructed circular aperture may be described by a series of

Zernike polynomials, with coBifients {a}.

W(p.g) = az(p.g). (55)
The tilt and coma components are defined specifically as
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Tilt:  Z, =pcos, Z,=psing, (56a)
Coma: Zg= (3p3 - Zp) cosQ, Z;= (?;p3 - 2p)sin(p, (56b)

p3cosp andp3sing do not appear independently within the Zernike polynomalmiear combination of

tilt and coma is required to represent these terms.
pcosp=4Z5+42)  gng PSINQ=4Z;+37,. (57)
For a simplified vector notation, define a position veptor
p=(pcosy psing), (58)
and two more vectors representing the tilt and comdiciesits of a Zernike Polynomials series.

A =(a.a,) “tilt vector”

) 59
FC =(ag.3;), “coma vector (59)

These vectors are shown in Fig. 1
Now, keeping only terms up to third-orddne path-length diérence in Eq. (54) may be re-written.

(The inclusion of higheorder terms, necessary only when bifs is lalge, is straightforward.)

AR= t(l—%tzpz)pﬁ;: t(p3) —%t3(p2pE'k) = t(l—%tz)s[qzl, z,)-1t%sM25,2;). (60)

Hence, T =t(1—%t2)8. and C=-%t%. (61a) and (61b)

Notice thats || T || C. Finally, the path-length dérence may be written as the sum of tilt and coma com
ponents.
AR=T ({71, 2,) +Cl(Z5,77) =t{1-3t2)si{(z1, Z,) - £ t°s1(Z5, 27) . (62)

5.5.2Isolating and Removing the Geometric Comafé&t

Accurate PDI or PS/PDI wavefront measurement in the absence of re-imaging optics requires that
the systematic error from the geometrical coma be identified and subtracted from ti@el@tare sev
eral means available for determining the magnitude of tfesteTfwo methods are described here.

The magnitude of the geometric coma depends very sensitively on tbéridasurement (N&
dependence)Vhen the data is analyzed, this Aot strictly the NAon the measurement-side of the
optical systemTypically a sub-region of the available data is selected: the relevaof Nferest here is
the NAdefinedby the selected sub-region and the cone of rays that created it. In practice it may therefore
be difficult to precisely know theneasuement NA

Method 1 outlines a procedure to follow when the measuremeiig WAll known. In Method 2,
two separate measurements witedé#nt fringe rotations and/or densities are combinedagpribri

knowledge of the measurement WMot required. In both cases, the goal is to determine the change
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§~§. 0.02 Figure 12.The image plane separation of the test and
§8 0.02 / reference beams introduces a systematic geometric
« § ' / coma errarThis graph shows the magnitude of the
g s 0.01 / required Zernike coétient coma correction per
EgE @ wave of measured tilt as a function of N#.0.08
3%“5 001 NA, the correction is 0.001waves of coma is
5L required for each wave of measured At0.1 NA,
g ‘§ 0.005 N the correction is 0.0017 waves per wave of tilt.
g S~
@ 0.000pt

0.00 0.10 0.20 0.30 0.40
numerical aperture, NA

required to remove the geometric coma from the Zernike polynomial serieguaralently from the
measured wavefront itself.

5.5.2.1Method 1: Removing the Geometric Coma with Known Measurement e mea
surement NAs precisely known, then the removal of the geometric coma systematic error is straightfor
ward.Analysis proceeds from the path-lengtHetiénce of Eq. (62)The tilt and coma vectors are parallel

and have a fixed relationship basedtotne tangent of the NAngle.

2T 2T

S - _ ~ _ 142
€= 6(1—%t2) T 6-2t2 T, (63a)
2
=—LT2=—%NA2T, (63b)
In terms of the NA, 6 - 8NA

The approximation holds for small NA.
In the presence of wavefront aberrations, the measured Cgmiay take any arbitrary value.
From this coma, the geometric coma ef@amust be subtracted to yie the actualcoma. Using the

measured tilt and the known NA, the geometric coma subtraction is as follows:

C'=C,-C=C,- (64)

6-2t2

Figure 12 shows the significance of this correction by plotting the amount of coma correction
required (in waves) per wave of measured tilt. If the system has 40 fringes, multiply the ordinate by 40 to
find the magnitude of required coma correction in waves.

Section 5.9 describes a coma that comes from the planar grafmagttify spherical beam. If this
effect is present in the test wavefront, then Egns. (63) and (64) may need modification to account for this
effect. Like the geometric coma, the grating coma is also proportional to the tilt, so the modification is not
complicated.

5.5.2.2Method 2: Removing Geometric Coma Using the fleienceWavefront. Performing two

separate experiments using gratings aligned fardift angles or with dirent pitch, enables a combina
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tion of measurements that can be used to identify and remove the geometric coma. (The image-plane ref
erence pinhole(s) and window must be designed to accommodat# tiigsanalysis method utilizes a
Zernike polynomial fit to thelifference wavetmt, representing the dérence between two separate mea
surements. Equivalentlgince the fitting polynomials are orthogonal, the first set offictezits may be
simply subtracted from the second set to provide the fittindiciaefts of the diference wavefront.

Consider separate measurements using to two gratings inserted into the same beam pasition, nor
mal to the central rayout with the rulings oriented along fdifent directionsThe image-plane beam sep
arations will bes; ands,, not necessarily equal in magnitudssume that the optical system under test
has an arbitrary wavefront aberratiddfip, ¢). To reduce measurement uncertainties, the two wavefronts
used here may themselves be composite wavefronts formed from multiple series of similar measurements.

If for both measurements the test beam passes through the same image-plane point, thenr the contri
bution of tilt and geometric coma to the two observed path lendératites may be written according to

Eqg. (59). Including arbitrary wavefront aberratiohls
0R =W +t(1-1t%)s, ({2, 2,) - 1%, ({25, Z,) = T, ({2, 2,) + C, [{Z6, Z;), (65a)
AR, =W+(1-1t%)s, [{Z,, 2,) - 1%, ({25, 2,) = T, ({2, 2,) + C, [{Ze. Z;). (65b)
Taking the diference,
AR -AR, =(Ty - T,)({2,,2,) +(C, - C,) 426, Z;) = T, U2, 2,) + C, 26, Z;) , (66)

where AR; — ARy) is the measured @frence wavefront, aritl, andC, are themeasued Zernike coefi-

cients that describe it.

s =(Ti-T2) = (a0, 8)
0o _ . (67)
s =(C1-C2) = (6. 2)
tilt vectors, T coma vectorsgC
ay ay
T
f y
(o
Tl Cl
— al 86
Cpa=C1-C>
TA:Tl_TZ CA:bTA

Figure 13.When two or more measurements are made f@relift orientations of the spatial carrier frequency of the
fringe pattern, the systematic coma may be isolated and renithisds facilitated by the definition of twdifference
vectorsT , andC,, as shownThe systematic coma components must be parallel to the tilt in the individual measure

ments. Experimentally the measured co@asndC, come from the inherent con@l plus the systematic coma,
oriented parallel to the tilt in each measurement. By using tfexatite com&,, the inherent coma is separated
from the systematic coma componefiise proportionality constattbetweenC, andT, is easily found using a
least-squares technique.
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The contributions of the wavefront we are trying to meadéliege removed by the subtraction.
Figure 13 shows the tilt and coma vectors of two separate measurements, aridrémeeiectors
described by Eq (67T-he measured coma vect@s andC, both contain the inherent cor@a, which is
removed by subtraction.

Even though the NAand thud) is not known, we may utilize the fact that th¢o of T, to C; and
of T, to C, is fixed, and solve for the proportionality constariat provides the best fit. Using the method

of least-squares, the criterion for the best fit to the data is to find the minimum of the error fE#(Elion

The minimum occurs where the derivative with respettitozero.

de?(b 2
dl:E ) <0=abf1, [ ~2(1, T,). (69)
R el (70)
Solving for b, " A” & T
By the known relationship of tilt and coma in Eq. (63), we can solve &rd thus NA.
b=-— ' and t= -0 (71)and (72)
6-2t2" 2b-1-

t

V1+t? (73)

From here, the procedure for removing the coma follows Method 1. From the two measured comas

NA = sin(tan‘l t) =

C; pand the measured tilf, , the geometric coma is subtracted. Separatetyeach measurement (1

and 2), we find the underlying comia.

C'=C,-C=Cy,-bT,=Cy, - DaHilZ? :_22;7 ETLz . (74)

The measured wavefront, after the removal of the systematic coma, is found frawerdogeor another
suitable combination.of the two sets of measurements.

As stated earlieiif the so-calledyrating comasystematic error is present in the test wavefront, then
the above discussion requires some simple modificafidresaddition of the grating coma onlyfexdts
the proportionality constant between the tilt and coma terms. Since for Method 2, the measureimment NA
a parameter of the fit, and the proportionality constant is unknown, no modification is required-to deter
mine the inherent coma. Howey&dquations (71) through (73) which relate the fitting paranteterthe

measurement NA, do require modification.
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5.5.2.3Alternate description of Method 2: Removing Geometric Coma

There is an alternate geometric description of the cc coma vectors
subtraction in Method 2 that does not use thieifice wave &
front, but yields the same solutidiVe utilize the two separat bT,
measurements, and the fact that the tilt vectors in each mi |
proportional to the geometric comwith the same @portion- ,'
ality constant. :

_——

Figure 14 shows a graphical representation of this C,

method. Using the coma terms from two measuremerts pi
. . Figure 14.A geometrically alternate, yet
formedat different beam displacemer@s andC,, vectorspro- mathematically identical description of the
systematic coma removal. Here the mea
sured comaC, andC,, contain both the
inherent com&’ and the systematic coma
components that are parallel to the mea
(they may not match exactly) at the location of the inherer  sured tiltsT, andT,. The constant of pro
portionalityb depends only on the Néand
comaC’ we are trying to find. Following the least-squares s the same for both. Finding thehat pro
vides the best agreement between the inher
method we define an error functi@A(b) that here represents  ent coma of the two separate measurements

yieldsC'.

portional to the tiltsT; andT, are subtracted to reach the be

agreemen(The distance between the two points is minimize

distance in the cof€ient vectorspace shown in Fig. 14.
E*(b) =|(C,-bTy)-(C, - bT2)||2 =[Colf + 024" - 26(T, IT4). (75)
This expression is identical to Equation (68), and thus its solution will be the same.

5.5 Summary

Measured Geometric Coma|C|=1/6 NAZ [T| O At 0.08 NA,|C|/[T|= 1/6 0.08 =
0.0011 waves per wave of tilt = 556104 waves per fringelC| = 0.37 nm @ 50 fringes.
At 0.1 NA, |C|/[T| = 1/6 0.2 = 0.0017 waves per wave of tilt = 83L04 waves per fringe.
|| = 0.56 nm @ 50 fringes.

5.6 SYSTEMATIC ERROR FROM DETECT OR MISALIGNMENT

It is reasonable to assume that the planar detector used in PS/PDI interferometry is not perfectly
aligned, with its surface-normal parallel to the central ray of the optical system. Such misalignment, repre
sented as a small inclination of the detector plane, introduces a systematic astigmalibeerm@aygnitude
of this error depends on the beam separation and may be comparable gethectaracylhe sensitiv
ty of a given configuration to detector misalignment is presented at the conclusion of this section.

Following Section 6.5 on the geometrical coma systematic, ¢éneefect of the detector misalign
ment on the observed interference pattern may be derived in terms té#dtafthe path-length difr-

ence between the test and reference beams, observed in a coordinate system appropriate for the detector
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) b) \ Figure 15.Definition of the
) coordinate systems used in the
Wp(x ¥ d

o8 description of the detector mis
image ES S
plane 5
g
8

alignment systematic error
Begin with Equation (51) for the path lengthfeience, using, as the distance from the image-

T

plane to the detector along th@xis, as shown in Fig. 15. In terms of the dimensionless coordinates, the

path length dierenceAR; is written in the case of perfect alignment
AR, = zoét(l—%tzpz)pcoscp, (76)

where, without loss of generalithhex-axis is defined along the displacemsnf the test and reference
beamsAs beforet is the tangent of the NAngle,d is the dimensionless angle related to the beam separa
tion, andp is a dimensionless radial coordinate in the detector system. Maintaining the cylindrical coordinate

system, and reintroducing= ptz, as theregular, Laboratoly radial coordinate,

AR, __El 2Hcoscp (77)

Figure 15 shows how the coordinate systems are defineghresents the radial coordinate in the detector
plane, whiler is the real-space radial coordinatéth a non-zero detector tilt angjethere are small changes

in z, X, andy across the detectddefine the vectors’ = (X, y') in the detector plane, and= (x, y) in the
Laboratory System, and, as before, the pateyular vectory = (y,, y,). Based on the tilt anghe misalign
mentof the detector introduces a first-order changeand a second-order change in the lateral coordinates.

Assuming small misalignments, only terms up to first ordgmiill be kept in the following discussion.

.
227, +Y, X +Y,Y = 2, +y [0 = ZOBHV—E (78)

The new path length dérence becomes

= g. 2 H’ cosQ, (79)

Using the first-order expansion pin yfrom Eq. (78), Eq. (79) gives

10 yr 20 2y 0

AR:ZS—?%—Q—E = o (80)
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Keeping only the most significant terms, Eq. (80) becomes

AR= AR, —@sr CoS@. (81)
pa

Putting this back in terms of the dimensionless coordinateg %),
AR= AR, —t*s(y [p)pcose. (82)

To simplify this expression, redefine how the detector tilt is described: the detector is inclined by an angle

y, in the azimuthal directioq)v. Then

yp=ypcoso-0,), (83)

and Eg. (82) becomes
AR= AR, - syt?p? cos((p— cpy) cos@= AR, —%sytzpz[cos(&p— (py) + coscpy] . (84)
This has the ééct of adding a small astigmatism to the measurements. Isolatingfeéremtit fromAR,
leaves
AR = _%szz[cos(Z(p—(py) + coscpy] ) (85)
The presence of the constant gpserm adds defocus and makes the magnitude of fieist efifferent
when the tilt direction is parallel or perpendicular to the beam separation dirdctletector tilt in thes-

direction & || s) produces a “cylindrical” path length tfence of

il AR, =-1syt%p?(cos2g+1) . (86)
For a tilt in they-direction § [0 s). the path-length change is astigmatic.

yilt: ARy = —%wtzpzsin&p . (87)
The term in Eq. (86) behaves as a small defocus, arising from the fact that one of the bdaassis of

5.6.1Numbers

The peak-to-valley magnitude of the astigmatism described by Eq. (87) is
peak-to-valley: |AR y| = wtz =sy NAZ . (88)
The approximation holds for small NA. Equation (88) is plotted in Fig. 16 as a function fafr déam
separations in the range relevant to EMigible, and 193 nm system measurements. For convenience, we

can re-write Eq. (88)uttingy in degrees rather than radiabe peak-to-valley astigmatism magnitude

per degree of detector tilt is

peak-to-valley: |AR y| ~0.0175sNA2=1.1x10*s@NA=0.08 . (89)
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P-V astigmatism per degree of detector tilt misalignment
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Figure 16.Detector misalignment (tilt) introduces a path-lengtfedénce between the test and reference beams
causing a systematic astigmatic error dependent on the beam separation and the measurdmergralAstars indi
cate relevant values for EUdNA visible-light PS/PDI interferometry at 0.08 NA.

5.6 Summary

Detector Misalignment. P-V astigmatismA = syNA2 0 ~0.47 nm tilt. Also, AlNfinge = A
NA/2 = 0.54 nn tilt/fringe. The measured Zernike céeient of astigmatism is half of this, or
0.27 nm tilt/fringe.

5.7 GRATING PLACEMENT CONSIDERATION: SHEAR

As discussed in Section 4.4, the PS/PDI shares many similarities to a conventional lateral shearing
interferometer (LSI) in that both systems introduce a relative lsbaay or displacement, to generate the
interference pattern. In principle, the various configurations of the LSI interfere the test beam with a
sheared copy (or copies) of its@lhe PS/PDI, on the other hand, produces a spherical reference wavefront
by spatially filtering one copy of the test beam in the image-plane where the beams are stylaeated.
the measurement involves spherically dieg beams and no re-imaging optics, in both configurations the
central rays of the two beams are directed at slightfgrdifit anglesThe beam shear in the PS/PDI is

determined by the grating pitch and the illumination wavele#gttemparison of the importance of shear

84



Systematic Eors and Measwement Issues

in the two interferometers is shown in Fig. 17.

By rule, the PS/PDI reference pinhole should be chosen small enough that the reference wavefront
significantly overfillsthe measurement NA. Howeysince pinhole-dffacted reference wavefronts are
typically of suitably high quality only within a cone of finite angle, selection of the grating position and
pitch should be made with attention to the beam shear angle. For a given optical system and wavelength,
the number of fringes in the interferogram depends only on the image-plane separation of the test and ref
erence beams (Section 5.Bhere are, howevginfinite combinations of grating pitch and position that
yield the same separation.

Here, the discussion is limited to the PS/PDI configuration with the grating placed between the test
optic and the image-plane. Similar analysis for other PS/PDI configurations follow a nearly identical form:
where the grating is placed before the test optic, the shear angle is scaled by the system magnification.

From the grating equation, the shear afigke equal to\/d. For a grating of pitckl and distance

from the image-planethe image- or object-plane separation of beam is
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0z=—=s, (90)
d
_— /,"--‘\\1
\ 4
. 4 shear angle
test beam reference beaTh" (ang|e between the
(high quality over half-angldd) Ce_ntraJ rays)

o
-
(a) small shear (b) large shear
_ oot rr-' "
- Pad
-'.- i 'H-“ /// Ifr 1I
a ; ‘I. f/ I |
& P ] // 1 i
(Q/.) | & "'\. .I'll
i I Y s
5 ¢ . i
5 &
5 £
= o,
\.‘ __.r'
(c) small shear (d) large shear

Figure 17.The importance of beam shear considerations is shown in this figure. Shear is here defined as the angle
between the central rays of the test and reference b&amsest beam is represented with solid lines, and the refer
ence beam with dashed lines, as shown in the toplnathie LSI (a) and (b), the test beam interferes with a sheared
copy of itself, and fringes are produced in the overlap reyilren the shear is Ige (b), only a fraction of the avail

able area is investigated. In the PS/PDI the spatially-filtered reference beam should havargerNi#an the test

optic (c). Howeverif the shear angle is ige (d), then to guarantee that the reference beam will overlap the test beam
over the measurement NA, the requirement on tliedifon angle of the reference beam becomes more severe.
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Assume for a given application that the reference wavefront is of arbitrarily high quality only over a cone
defined from the central ragut to a half-angl@. Clearly a minimum requirement for measurement is
that3 > a, the maximum half-angle within the N#& measurementVhen the shear angleis significant
relative toa, and the test and reference beams are displaced, the new requirefhiéetomes
B>a+06. (91)

Producing a high-quality reference wavefront is a matter of foremost importance and a significant
challenge to point-difaction interferometryAny method of relaxing the requirements on the magnitude
of B gives more freedom to other experimental parameters. One direct means of rBdsi¢mgeep the
shear angl® as small as possible. For a given image- or object-plane beam sepgratioay be
reduced by moving the grating away from the image-plane (or away from the object plane in other
PS/PDI configurations). Choosing the optimum grating position requires balances the often oppesing con
cerns of the grating’pitch and the illuminated area. Fabrication issues may constrain the maximum size

of the grating, but gratings of ger pitch (coarsemay often be made to higher quality

5.7 Summary

ShearAngle. 6 = Nd = shear angled = grating pitch3 = half-angle over which reference
wavefront is of arbitrarily high qualityt = NA. Minimum requirement > 6 + a.

5.8 GRATING FABRICATION ERRORS

Aberrations and local imperfections in the grating-beamsplitter can contribute directly measurement
errors.This section describes the most significant grating error contributions, and recommends various
methods of overcoming thefhe most important recommendation is that when the quality of the grating
cannot be guaranteed to beyond the level of measurement accuracy desired, then one of thadiest-dif
order beams should be filtered to become the reference beam.

It is helpful to view the grating, which serves a dual role as beamsplitter and phase-shifting ele
ment, as a binary transmission hologram approximating the coherent interference of multiple plane waves
separated by small angles. Imperfections in the grating pattern can be described by aberrations in the
interfering beamsThe inversionof this description (by BabinatPrinciple)is a single illuminating beam
diffracted by the imperfect grating into multiple, coherent, aberrated beams.

For the following discussion it is useful to treafeli&nt types of grating imperfections separately
Figure 18(b) shows several types of grating defects. Pattern placement errors, in which the unbroken opaque
lines are not accurdyedrawn, are referred to ggating aberations The other kinds of defects in which
the opaque lines are missirngansparent regions are obstructed, or the thickness of the supporting substrate
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is non-uniform are addressed separately from the grating aberi
tions.
5.8.1Grating Aberrations

It is important to note that the phase of the zeroth-ordel
fracted beam isot affectecby the grating pattern itself. Light
propagating into the zeroth-order adidiphase independent of
the positions of the rulingShis is because the grating pattern
introduces no path-length change into the various parts of the
zeroth-order beam. On the other hand, thieadifed beams are
defined bythe grating positions: the wavefront phase of these
fracted beams is subject directly to the grating aberrafidresfok
lowing discussion presents a simple analogy that is used to d
strate this point.

In the absence of a grating, the superposition of multipl
coherent beams would form a stationary intensity pattern in tf
grating plane. By Babinet'Principle (Babinet 1837), the single-
beam illumination of a grating that approximates this same ini
ty pattern generates the fdifction of multiple beams similar to tl

former configuration.
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(a) ideal
binary grating

I

|8|

i

(b) exaggerated
nonideal grating

Figure 18.Imperfections in the
PS/PDI grating beamsplitter can
introduce aberrations into the test and
reference beams. (ahows an ideal
binary transmission grating of equal
line and space ratidhe grating in

(b) contains several aberrations types
discussed in this section: low-spatial
frequency pattern errors, dust or sub
strate errors, and pattern defects.
These types of aberrations cafeef

the test and reference beam irfefif
ent ways.

To illustrate this point, consider a grating of pittivith rulings aligned perpendicular to the

axis. Define the spatial carrier frequency of the grating

210~
=—X.
d

K

(92)

We may represent the grating transmission funckioh as asquae wavedefined by an arbitrarspatial
ly varying grating phase®(r). Separating the grating phase into an aberration fungfigrand a carrier
frequencywe have
®(r) = olr) +K [ = glr) +Kx, (93)
A, cod®(r)] 20
=0 .
FD, cog@(r)] <0

This description leads naturally to a representation of the grating as the interference of two beams.

and T(r) (94)

At this point, we neglect the spherically digirg or conveging angle of incidence, and consider the

beams as plane waves. (Section 5.9 addresses the systematic error issues related to the planar grating in
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spherical beam.) In this description, assume unit intensity of the beams, neglect variation of the beam
intensities, and assume that the test beam is unabeifhtedormalized intensity of the two interfering

beams is given by

() =4+ €*0f = 3+ oo ()] (%5)

The square-wave grating transmission function of Eq. (94) is an approximation to this sinusoidal varia
tion. Placing a simple threshold on Eq. (95) completes the analogy to Eq. (94), and justifies the approxi
mation. Sinceb was chosen arbitrarilghen for any grating phase functidxr) the difracted beams
acquire a wavefront aberratiqr) and a direction determined &y

Regarding the description of spherical beams, Eq. (95) may be generalized to allow both of the
interfering beams to contain an additional phase term representing the path Idagghatifbetween a
spherical surface and the grating plafnieis additional phase, defined &§), appears in both beams, and

thus the resultant intensity pattern is dieetied. Mathematically

|'(I’) - %‘eir(r) + eiq:(r)+ir(r)

:%+%cos[®(r)] =1(r). (96)

The analogy may be extended to include the high@adiéd orders. Re-creation of a square-wave
intensity profile in the grating plane requires an infinite series of interfering beams, each with the same
phase aberration, but with aféifent propagation direction and intensitpiese beam directions are given
by positive and negative integer multipleskdf . . -X, -k, 0,x, 2, . . .nx, . . .).The illumination of the
square-wave grating with the single test beam generates this same serfeaovédlibrdersThis series

may be generalized as a Fourier cosine series.
T(r) = Y acodq(r) +nkx] . (97)
n

5.8.2Phase-Shifting

The origin of the phase-shifting properties of the grating is easily shown from the discussion of the
previous section. Here, neglect aberrations and imperfections in the grating, and assume that the grating is
defined by a carriefrequencyk and a square-wave transmission function. Once again we equating the
coherently-combined intensity of a series of interfering beams with the grating transmission fixsction.
above, takingc to be aligned with th&-axis, the translational invariance of the grating along/itizec

tion allows the substitution offor r.
() =T(x) = ¥ acos(nk). (98)
n

Physical translation of the grating in tkelirection, perpendicular to the grating rulings, may be

expressed as
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1(x=%,) =T(x=%,) = > ancos[nK(x - xo)] =5 a,cos(nkx-A4,) (99)
n n

where we defined the phase steg\as nkx,. This very important result shows that a physical translation
of the grating produces the samteef on the diracted waves as a constant phassetetween the
interfering beams in our model. Furthermore, between anwatiiazentgrating orders4n = +1), for a
given grating translation the relative phase shift will be the s@ha.is, the expression
Ag(n,n=1;X,) = Nkx, = (N=1)KX, =KX, (100)

is invariant inn.

Another important, albeit obvious, by-product of this discussion is that the grating translation required
to produce af, single-cycle, phase shift between adjaceffitagifed beams is simply; (Recalling the defi
nition of k = 217d, we can see from Eqg. (100) that the translatjprequired to produce atphase change
is in factd.) Since the ideal grating in this treatment is periodicwith periodd, we should expect that
translation byd returns the system to its original state.
5.8.3Local Imperfections and Substrate Errors

Besides the low-spatial frequency pattern errors which introduce phase aberrations infoatite dif
ed beams, there are othbkigherspatial frequency errors of conceAm opaque dust particle or a defect
within the illuminated area of the grating may appear as a dim region, or a region of low (or zero) fringe
contrast in the data. Since the plane of the grating is not typically imaged onto the detector friane, dif
tion broadens the features of these high-spatial frequency aberrA8ahg. grating is translated over
several fringe cycles, the motion of these aberrations will distinguish them from the stationary defects in
the optics or elsewhere. By performing careful measurement, it may be possible to overcome localized
grating defects by using otheleanregions of the grating.

One form of grating fabrication error is perhaps the most troublesome. If the grating is patterned on
a membrane or substrate, then substrate thickness variations can introduce phase errors that could be ver
difficult errors to overcome. In that case, the quality of the test beam is directly compromised. Once
again, careful measurements performed usirfgreifit regions of a lge grating may reveal the presence
of such systematic errors.
5.8.4Recommendations

The above discussion leads to a recommendation that may appear-tduititez. It has been
shown that aside-from local imperfections and substrate errors, grating pattern aberrations create phase
errors only in the difacted beams. By allowing the zeroth-order to become the test beam, and by spatially

filtering one of the difacted orders to become the reference beam, these grating aberrations may be over
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come.That is, where concerns about the grating quality exist, the first-order reference configuration is rec
ommended over the zeroth-order reference configurafttia.recommendation, howeyeuns contrary to

the assertion that the zeroth-order reference configuration should be used to achieve high fringe-contrast.

5.8 Summary

Grating Fabrication Err ors. Recommendationuse thefirst-order refeenceconfiguration
whenever grating fabrication error magnitudes are unknown, or are known to be comparable
with the desired accuracy

5.9 GRATING COMA

Another potentially significant systematic error comes from the use of a planar grating beamsplitter
in a spherically divaying or convaging beam. Since the angles of incidence vary across the illuminated
region of the grating, a small phase error is introduced into thaadd beams. In a geometrical descrip
tion, the grating pitch appears reduced to tie@wif rays perpendicular to the grating rulingbis leads
to a variation in the difaction angle within the cone of the beam.

Thegrating comaintroduced here may be filtered, and therefore eliminated, when the interferome
ter is used in the first-order reference configuration — the grating aberrations are manifest only in the
non-zero difracted orders (Section 5.8)herefore with appropriate filtering, the relevance of the grating
coma may be limited to the zeroth-order reference configuration only

The mathematical formulation presented here follows from the discussion of grating aberrations in
Section 5.8It is important here to consider the spherical djeece of the illuminating bears before,
we create an analogy between the grating transmission, and the intensity pattern produced by a pair of
coherently interfering beams in the grating plane. Starting with a single, illuminating beam, we solve for
the phase aberrations ofidifracted beantequired to produce the desired pattern. Limiting our discussion
to the interference of only two beams simplifies the problem considefahilyat end, consider only the
fundamental sinusoidal-transmission of an ideal grating of gitthe descriptions fotonveging and
diverging beams, with a radius of curvatuReare identical in form.

Consider the illuminating beam to be an ideal spherical wavegitigefrom a point source located
a distance from the grating planéhe path length of a ray traveling from the source to a pasR, as
shown in Fig. 36 and@ are defined as the spherical polar and azimuthal angles, araxtigeis defined
perpendicular to the direction of the grating lines.

In the plane of the grating, the radial coordinate,

r=ztan®, (101)

andx in the new coordinate system is
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X =r cos@= ztanBcosQ. (102)
The path lengthR from the source point to the grating is
R=z+rsin®=z+ztan@sin® = z(1+tanOsind). (103)

Our immediate goal is to discover the phase of a beam that interferes with the illuminating beam to
produce the grating pattern in intensig before, we assume the two interfering beams are of uniform
intensity across the illuminated ar&®e may express the grating transmission function in the new eoordi
nate system, using defined as beforex = 217d.

T(x) = § +$cos(kx) = 4 + § cosg(kztan 6 cosg) . (104)

The normalized intensity pattern produced by the interference of two beams is
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Figure 19.The amount of systematic coma error introduced by the planar grating in a spherical beam depends on the
system NAiIn the vicinity of the grating, and on the amount of tilt or equivalently the number of fringes in the mea
surementThe top row shows the ratio of the Zernike comafadent to the tilt codicient plotted in log-log and lin

ear scalesThe lower row calculates the amount of coma for a certain number of interferogram fringes within the
measurement NAThe same information is plotted in log-log and linear sddie.grating angle is arbitrary and

therefore this discussion is easily extended to jfewma and the dilt components.
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. L2
I(r) =4[ +€°| =4+ Lcos(®-kR). (105)

Comparing Eqns. (104) and (105) allows us to solve for the phase fudiction

® =kR+kx =kR+kztanBcose. (106)

Here thekRterm is not expanded in order to keep the form of the giivgr(or convaging) beam in the
expression of interfering beafhe remaining term has onkdependence because of thegosmpo
nent.A series expansion Bireveals separate terms that represent the spherical componenfyaotiatif

angle of the second beam, and higbeter phase aberrations.

¢ =kR+ choscde +10°+20°+. ] = kR+(kzcos@)0 + 5 (kzcosg)0® + 2 (kzcos@)@® +---  (107)

® = (spherical part) +(tilt) + (higher - order aberrations) . (108)

As a final step, it is convenient to represent the phase termsiothelizedBeam Coalinate
Systenwhere the polar angkis normalized to the NAnglea: p = 8a. Here,p is a dimensionless
angular radiusvariable, that allows us to make the transition froBeam Coadlinate Systepnto a repre
sentation on a unit circle, over which the Zernike Polynomials are orthogonal. Here it is important to
remember thatr is thelocal NAangle describing the optical system in the vicinity of the grating. Clearly
if the beam is planar (collimated) as it reactiesgrating, thewt = 0, and there is no systematifeet

introduced by the grating, regardless of the image-side NA.
® = kR+ (ak2)p cosp+ (%aus)p3 cosp+ (1—2£-)0(5}<z)p5 cosp+--- (109)

We can write this explicitly in terms of the Zernike polynomials, as described in Chapter 14, using the
shorthand notation for the Zernike polynomiz]s Z;(p,@). After tilt, the third and fifth-ordexk-direction

coma terms are

Z; =pcosy, (110a)
Zs= (3p3 - Zp) cosQ, (110b)
2,5 = (10p° ~12p° +3p) coso. (110c)

The isolated cubic, and fifth-order terms that appear in Eqg. (109) can be re-written using
plcosp=425+%2, (111a)
and P cosg=423+2Z5+3 2. (111b)

Keeping only terms up to fifth-ordewe can now rearrange terms to write Eq (109) as

® =kR+kao(1+ 302 + Fat)z, +kao(§+ s a?)Z, + ke ®Z (112)
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Aside from the aberrations in the test optics, and other unrelated systematic error sources, this-is the mea
sured phase.

The methods for removing the grating coma follow directly from the removal of the systematic
coma, described in Section 5.5alfthelocal NAin the vicinity of the grating, is well-known then the
removal may be straightforward. Note that it may be the case thatetdwuement NAwhich includes
only the sub-region of the beam involved in the analysis, is smaller than the availabiehdAletector
In such cases, thleeused in the calculations should be theasuementa, representing only the subset of
rays that eventually reach the detector and are used in the analysis.

At this point, the direction of the grating rulings can be generaliteel description is simplified
by using the representation of Zernike pairs in vector notation, as described in Section 5.5.1. Here, we uti
lize a tilt vectorT = (a4, ay), a coma vecto€ = (ag, a7), and we introduce a fifth-order coma vector
Cs = (43 a14). By matching the coétients in Eq. (12) the magnitude of the grating coma is prepor

tional to the tilt

(1+¥0(2)0(2
— 25 ~ 12
9+202+3a* TeaT (113)

Hence the adjustment @ required to remove the grating coma is
C=C-AC . (114)

The fifth-order correctiol€s is always more than one order of magnitude smaller than the third-order

correction.
7250‘4 2 4
ACg=—B "  _T=2a"T (115)
2.2, 1.4 75 '
1+§a +450
and the required adjustment is Cs =C5-ACs. (116)

Figures 19(a) and (l®hows the magnitude dfg relative toa,, calculated for between 10 and 60 fringes.
The magnitude in waves is plotted in Figs. 19(c) and (d).
If the measurement N& not well known, then a method of combining orthogonal measurements,

as described in Section 5.5.2, should be employed.

5.9 Summary
Grating Coma. |C| = 1/9 NAZ |T|= 3.6x 104 waves per fringglC| = 0.19 nm @ 40 fringes.

5.10 SATIAL FILTERING BY THE IMAGE-PLANE WINDOW

ly passing the test beam through a finite window in the image plane, the PS/PDI performs-an inher
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ent spatial filtering of the light in a way that the PDI does Tlo¢ significance of this low-pass filtering
depends on the size and shape of the window relative to the size of the focusethigeievant length
scale, it will be shown, i5/NA.

A certain amount of filtering is required to ensure that the overlap of the adjacent orders is mini
mized as the test beam passes through the winfitive system is designed carefuliigen with the refer
ence beam centered on the reference pinhole, the test beam passes through the center of the window

Since the filter sits in the image plane of the test optic, and measurements are performed-in the far
field, the window may be regarded simply as a spatial filter ifrtheier domainof the beamThis
description is repeented in Fig. 20. For the test beam, the window acts as a broad, low-pa3sélter
pinhole acts as eery narow low-pass filter for the reference beam (ideadlydelta-function)The window
displaced significantly from the central ray of the reference beam, functions as a band-pasandtait
ting, orleaking higher spatial-frequency componeritke fact that thesefetts are readily observed in the
data has led to the development of an alignment system based on a rapid 2-Biaosf@m of the mea
sured dataThese observations are discussed in Section 6.5.)
5.10.1A Simple Model for Spatial Filtering

This section presents a simple mathematical treatment of the wimdpatial filtering déct.
Based on the fact that the light propagates from the exit pupil of the test system to a focus in the image-
plane, and then to the detector in thefi@ld, we may regard the pinhole and window as spatial filters in
the Fourier domain of the beam, as stated above. For spatial filters of moderate dimensioficiemd suf
distance to the detectdhe farfield (Fraunhofer) approximation for the fl#ction calculations is suitable

(Goodman 1988:61)he neaifield term becomes significant only when for the lateral distance r

Az
r \/% . (117)

This is approximately 2Qm at 13.4-nm wavelength and 10-cm distance.
Define G; as the electric field of the test beam in the exit pupil of the test @ifis. the test beam
field as it reaches the detegtafter having passed through the image planeglbet the field in the

image-plane, antlbe the transmission function of the window; either or both may be complex. Here we

Figure 20.A simple lateral translation of the image-plane
spatial filter in the PS/PDI switches between the first-
order reference and the zeroth-order reference configura
tions.The axes here are centered on the test beam focus.
The positive and negative first-fidicted-orders fall on
opposite sides of the focuBanslating the spatial-filter
makes either the zeroth-order beam or one of the first-
order beams the reference beam.

first-order reference zeroth-order reference
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will use the symboF{ } to denote the Fourietransform in the following manner:
F{b(k)} =, b(k)e" "dk = B(r) . (118)
Based on our assumptions fgrandg,
F{G}=g F{T}=t. (119)

The ConvolutiorTheorem allows us to determifeg

Fod} =G -T=G, . (120)

The features of; are essentially mapped ory. The efect of the filtering appears in the detected field as
a convolution of the propagated test beam and the Fararesform of the window transmission function.
The efect of an arbitrary filter may be studied in terms of its transférivhen the window is
small, then the central peak dis angularly broad, and the convolution@fwith T blurs any sharp fea
tures inG;, decreasing the spatial frequency content of the measurement. Otherwise, when the window is
large, the peak of will be very narrowand the convolution d&; with T will leave G; largely unafected.
T helps us to define thengularresolutionof a given filter
Let us consider a square window of wigthand explicitly write the dffaction equation. Some

leading constant coifients are ignored for simplicity
T = [ 1) &Far = (1" ax f17e" "y (121)
T(k) = w? sinc(} wk, ) sinc{} wk ) . (122)
T may be expressed in terms of the polar angles ir-taady-directions6 = (6,,, ey).
T(6) = w? sinc(} wk®, ) sinc{3 ke, ). (123)
The full-width of the central peak of sim(s approximatelyt Thus, the angular width dfis given approxi

mately by

wk AB 2m A
— =1 AB=—=—
> oW (124)

This width itself has no dependence on NA. Howeligsisignificance on the highest measurable spatial
frequencies, is given by the ratio of the full angle of the optical systeto 26.

highest frequency = 2a =20(—W = 2w cycles. (125)

Features of higher spatial frequency than this will subtend an angle small@&6tttha convolution will

strongly blur these feature&8 may be regarded as thagular resolutionof the PS/PDI in any direction.

For the EUVconfiguration of 13.4-nm wavelength, with 0.08 or 0.1 NA, Fig. 21 shows the highest trans
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mitted spatial frequency for a range of reasonable window sizes.
5.10.2Effect of Spatial Filtering on the Intensity and Phase Measurement
The above description showed that the image-plane spatial filtering of the windollunslyarp
(angularly narrow) features in the test wavefront when the window is relatively small. It is important to
understand how this blurring mayfexdt the measured intensiyd phasef the test wavefront. For every
specific design of the window/'size, shape, and position, thikeef will be somewhat dérent. In this sec
tion, an informal, heuristic gument provides a useful tool for demonstrating that when the test optics are
of high quality intensity ripples adjacent to sharp features may not be accompanied by ripples in the phase.
If the centered window transmission functigin) is strictly real and has polar symmetityen its
FouriertransformT (k) is also strictly realThe following equation demonstrates this point for an arbitrary

real functiont(r).

T(k) = [1(r) "o = J'At(r)(e”"f' +eC)dr =2 [ () cos(k (¥} dr OR. (126)

Depending on the shape of the winddwnay have a series of positive and negative lobes. (This is the
case for the rectangular window and its accompanying sinc function transform. Furthermore, in an aberra
tion-free optical system, apart from any constantfaeit the test bear@; is also realThus the convo
lution of the test bear@; with T (that is,Gy) is real.

Sharp changes in the test beam intensity may occur where there are physical apertures or pupils
within the system, or where defects in the optical surfaces create localized dark Petgilbagietectqr
these sharp changes in the intensity may be accompanied by intensity oscillations, due (mathematically) tc
the convolution of the test beam with the lobe3.d&s T is a strictly real function, howevehere is be
no variationin the phase oBy. Clearly if the test optic contains features that create rppasevaria-
tions across the aperture then there will be accompanying ripples in phase as well.
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Figure 22.Simulated image-plane spatial filtering of a uniformly illuminated optical system with a circular aperture.
The window in the PS/PDI spatial filter transmits the test beam with some spatial filtering. For 13.4 nm wavelength
and 0.08 NA, the &ct of variously sized square and circular filters is shdime. intensity recorded in the detector
plane clearly shows thefetts of filtering at 54m-width and below

0.5 um

square

circular

5.10.3Examples

A straightforward difaction simulation is performed to illustrate théeef of various amounts of spa
tial filtering on a PS/PDI interferometer for EWtical system measurement. Considering an aberration-free
optical system operating at 13.4 nm wavelength with 0.08 NA, both circular and square windofescoit dif
widths are studied.

Figure 22 shows the (simulated) detected intensities for square (top row) and circular (bottom row)
windows 0.5- to 5.@@m-wide.As described above, the ripples are caused by the convolution of the circu
lar pupil with the Fourietransform of the window transmission function.

Another subject of interest is the way in which spatial filterifigcs$ small, localized defects in the
optic. Figure 23 shows the results of a simulation in which these defects are modeled as dark circles in an
otherwise bright region far from the edge of the aperfire.top row shows how these sharply-defined dark
regions appear in the exit pupit 0.08 NA, the fraction of the whole aperture subtended by these features is
shown above each. For reference, these relative sizes are also provided for the two cases of the zoneplate
and the Schwarzschild objective experimente pupil sizes in these cases are @00and 4 mm respec
tively. The relevant dimension of the dark features is their angular size with respect to the full aperture of the
test optic.The bottom row shows the (simulated) intensity patterns at the deseetied for displayrhe
angular widthof these simulation images is 1/10-th of the aperture.

Notice that below 1/40-th of the aperture width, the features are below the angular resolution of the
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1/400 1/200 1/100 1/40 3/80
0.5 um (200 pm) 1 pm (200 pm) 2 pm (200 pm) 5 pm (200 pm) 7.5 pm (200 pm)
10 um (4 mm) 20 pm (4 mm) 40 pm (4 mm) 100 pm (4 mm) 150 pym (4 mm)

original

detected

|a— 1710 —p
20 pm (200 pm)
400 pm (4 mm)
Figure 23..Spatial filtering of defects in the test optic is simulated in this figure. Here, defects are modeled as dark
solid circles in an otherwise bright pupil illumination patté&hove each simulation, the defect sizes are given as a
fraction of the full angular width of the optic, with relevant numbers quoted for the zoneplate experiment ard the 10
Schwarzschild objective. Here the defect size is given with the full aperture size shown in parefleciles.

width is 5um. Details of the same angular area of the pupil as recorded in the detector plane are shown in the lower
row; the images are scaled for displBglow 1/40-th of the full-angle, the defects behave essentially as delta-function
aberrations, unresolved by the spatial filedyove 1/40-th of the full-angle, the recorded test beam patterns follow the
increasing angular size of the defedise horizontal and vertical pattern in the test beam images is the sinc function
generated by the square window shape.

window, and all appear very similadBecause of their relatively small size, the resultant intensity patterns
reveal the behavior af. Mathematically this situation is analogous to the convolution of a delta-function
with T. In qualitative agreement with Eq. (125) plotted in Fig. 21, the highest transmitted frequency lies

between 1/40 and 1/100 of the aperture width. Features smaller than this sizer@selnetby the filter

5.10 Summary
Spatial Filtering. Highest spatial frequency f wZA/NA) cycles O 12 cyclegim filter width.

5.11 VARIATIONS OF THE PS/PDI SFATIAL FILTER

The previous section described the way in which the size of the image-plane wifelis/tht
highest spatial frequencies resolvable with a given configuration of the P8IB[j.the window-pinhole
displacement direction, the maximum allowable width of the window is constrained by the image-plane
separation of the test and reference beams. Howievteie perpendicular direction, there is no constraint
on the size of the window: the window may be defined as a long slit, narrowdisglecement direction

The square window design is easily generalized to the case of a rectangular window of dimensions
w, andw. The Fourieitransform of the rectangular window transmission function is
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T(0) = wyw,sinc{3 w ke, ) sing(3wyke ) | (127)

Separating the- andy- directions allows the definition of two angular convolution half-widths.

A8, = Wlx and AB, = le (128)

These serve as thxe andy-direction angular resolution of the systeks.described in Section 5.10, to
maintain a high spatial frequency response, it is desirable toMN@ap small as possible. It is not neces
sary howeverto reduce)d significantly beyond the angular resolution of the detectsumally determined
by the pixel size and the detector placement.

To minimize overlap of adjacent orders on either side of the test beam, the size of the window is
constrained in the displacement directidhe width should not exceed the beam separation distance
With x aligned parallel to the displacement, this constraint on the maximum sizgwf < s) limits the
minimum achievablé8,. In they-direction, since there is no such constrakf, may be made as small
as desired.
5.11.1Image-PlaneWindow/Pinhole Filter Designs

There are a number of available designs for the window and pinhole spatial filters some of which
are shown in Fig. 24T’hese designs, each allows only two beams to pass through at a time, are divided
into two sets to distinguish between fivet-order refeenceand thezeoth-order refelenceconfigura
tions. By definition, the reference beam is whichever beam is filtered by passing through the small refer
ence pinhole.

Several designs enable measurement in two directions without requiring window translation. In two
measurements, one grating may be replaced by anotiesrted with its rulings rotated by 90 degrees
from the first. Sections 5.5 describes the importance of having separate measurements performed with dif
ferent test and reference beam displacements.

One advantage of the first-order reference configuration not previously addressed is the fixed posi
tion of the test beam when separate measurements are prefdhiseguarantees that the same field
point is being measured. Plus, as described in Sections 5.8 and 5.9, the first-order reference configuration
can be used to filter aberrations introduced by a grating beamsplitéefirst-order referencsvo-direc
tionsdesign shown in Fig. 24 was chosen for the experiments inigtgkferometry described in this
thesis.The ability to perform a pair of measurements without translating the beam is very important if the
beam separation distance is significant with respect to the field-of-view of the test optic.

In the presence of Ige mid- or high-spatial frequency aberrations, which scatter light away from

the central peak in the image-plane, it may be desirable to reduce the amount of beam overlap, by
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First-order referenceconfigurations

conventional design two-directions low-frequency high-frequency
(overlap minimization)

Zeroth-order referenceonfigurations

= | ) -]

conventional design two-directions low-frequency high-frequency
(overlap minimization) in two directions

Figure 24.Several designs for the PS/PDI image-plane spatial-filter in both the first-order reference and the zeroth-
order reference configurations. Patterns that are symmetric @bod®® are designed to be used with two separate

90° orientationsof the beamsplittetamger windows transmit a greater range of test beam spatial frequencies, however
leakageof the reference beam through the windows may introduce measurement uncertainties.

decreasing the size of the winddwvhe so-calledow-frequencydesigns shown in Fig. 24 sacrifice spatial
resolution to improve data quality

As described above, there is no constraint on the size of the window perpendicular to the beam sep
aration directionThe high-frequencydesigns shown in Fig. 24 exploit this fact by using a rectangular
window, long in one direction, to transmit high-spatial-frequencies. In the first-order reference cenfigura
tion, howeverit may not be possible to have two orientations of measurement with a single high-frequen
cy designThe filter design shown in Fig. 25 achieves the objectives of having tieoetif beam separa
tionsand high-spatial-frequency response (in one direction) with either the zeroth-order reference or the
first-order reference configurationBwvo gratings of diierent pitch but oriented in the same direction may

be placed on the same translation stage to simplify the experimental apparatus.

Figure 25.An image-plane spatial filter design that
allows measurement with two fifent beam separa
tions, and provides high-spatial-frequency response in
both the zeroth-order and the first-order reference con
figurations.Two gratings of diferent pitch, but same
orientation are usehe reference pinholes are inten
tionally displaced to avoid overlap from adjacent dif
fracted orders.

5.11 Summary

« Filter Design.Place pinholes at 9@&djacent to a square window to enable direct measure
ments of systematic fetcts. Separatelyadjust width perpendicular to beam separation to
improve spatial frequency response.
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5.12 DISTORTIONS DUE TO THE PLANAR DETECT OR

In the absence of re-imaging optics, the test and reference beams propagate as spherigaity diver
beams incident on a planar detecRrnevious sections (5.5 and 5.6) have described the systematic error
contributions of the beam separation at focus, and detector misalignment, based on the geometry of the
systemAnother source of systematic error is the small geometric distortion arising from the planar geom
etry of the detector itself, intercepting the spherical beams.

Unlike the previous systematic error components which arise from a path-lerfigtaraié
between the test and reference beams, tféstahay be described as a systematic, radial distortion across
the measured area. In the angular representation Belnmm Coaldinates the planabDetector Coodinate
Systenbecomes non-linear with a purely radial dependence.

In theBeam Coalinate Systenthe polar angle at a given detector positiod isis the radial
detector position.

r(6)=ztan® - G(r):tan_l%g. (129)

The radiug in the detector plane corresponds to rays at the maximum angle within tberh&asure

menta,
Iy = ztana (130)

As beforet is the tangent of the NAnglea.

r—:tanO( =t. (131)
z

In theNormalized Detector Codmates the dimensionless radipsis defined as
p=—. (132)
Now, 8 may be rewritten in terms of these new parameters

o(r) = tan‘l%g: tan‘lé%ééz tan~(tp) =6(p) . (133)

When a measurement is made, the wavefront is typically sampled on an array lifeap)nEquation
(133) represents@rrectionwhich must be performed after measurement, to put the wavefront back into its
natural, spherical coordinate systdim.make the transition from the normaliZBeftectorcoordinate system

to a normalizedBeamcoordinate system, we divifieby a as described in Section 5.2. Definas the nor

malized polar angle.
1, _
y(p)=—+= Stan Y(tp). (135)
By their definitionsyy andp will be equal only at the central point£ p = 0) and at the edge of the mea
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surement NAy = p = 1). For the domain gf on (0,1), there is some distortion, dependent on the NA.
For small measurement Nfxapproximate® over the entire range. For ¢gr measurement NA, howeyer
the non-linearity causes the two to diyerThis dimensionless distortion may be characterized by-intro

ducing a parametex defined as
1, 1, -
A(p) =(p) -p = tan(tp) ~p = —tan(tena p) -p. (136)

A, which is defined in the normalized coordinate system, indicates tareedife between the actual polar
angle (normalized) and the radial position on the detdatane interpretation, for a givgn A represents

the amount ofadial shiftthat is required to remove the distortion. Since by definitiandp agree at 0 and

1, A must be zero at these points. Figure 26 shifp¥ plotted for nine dierent values of NArecall,a =

NA). Table 3 first lists the peak value of the distortion for eactsN#wn in Fig. 26, and then translates that
number into pixels in several experimental measurement doriéthdN as the pixel-width of a measured
interferogram, the normalized peak distortlg,is multiplied by the radiubl/2 to calculate the amount of
distortion in pixels. Note that at 0.08 NA, the approximate image-sidefdfesent EUMithographic opt

cal systems, the peak distortion is &2@4, less than 0.19d his indicates the presence of a 1i@y83-pixel

peak distortion in a typical, 800-pixel-diameter measurement.

5.12 Summary

Planar Detector Distortion. For 800-pixel measurement diametand 0.08 NA, peak
distortiomA = 8.22x 104 O 0.33 pixels.

0.10 1071
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Detector radial coordinate, Detector radial coordinate,

Figure 26.The use of a planar detector to record the sphericallygingeinterference pattern introduces a radial dis
tortion into the coordinate system of measurenmf&sthe radial position of a point on the detector is translated into
an angular position in the beam, the two coordinate systems match only at the center and the dori¢éithiadbe.
array the radial distortiod\(p) is defined in Eq. (136).
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Table 3.Peak measurement distortion firxelg for a various array 0.10
sizes, at dierent NA.A,eq[pixels] = Apeq (Npixeld2)- v,
< 0.08 v
MeasuremenArray Size (pixels) 2
NA | Distortion 250 500 750 1000 | S 0.06
0.05 3.20x 104 0.04 0.08 0.12 0.16 © p
0.1 | 1.29x103 016 032 048 065 | 004
0.2 5.17x 103 0.65 1.29 1.94 2.59 = . A
03 | 1.18x102 | 148 295 443 59 0.02 7
0.4 2.12x 10?2 2.65 5.3 7.95 10.6 0.00
0.5 | 3.38x102 423 845 1268 169 00 02 04 06 08
0.6 4.98x 102 6.23 12.45 18.68 24.9 numerical aperture, NA
0.7 6.98x 102 8.73 17.45 26.18 34.9 Figure 27.Peak distortion as a function of
0.8 9.45x% 102 11.81 23.63 35.44 47.25 NA. The distortion is based on a unit-circle

coordinate system.

5.13 SUMMARY OF SYSTEMATIC ERRORS AND RECOMMENDA TIONS
The following list enumerates the most important results and systematic éobs eescribed in
this chapterThe numbers pertain to the at-wavelength measurement of aditBbyfaphic optic operat
ing at 13.4-nm wavelength with 0.08 NA.
* 5.3 Beam Separations/Nyjnge = M2t = 0.084um/fringe [ Ngjngd/s = 2/A = 12 fringegim.

e 54 Bandwidth.Wg =2.22x 107 @ 0.1% BW(Gaussian distribution). Fringe amplitude is reduced
by 2.22x 107 per wavé of aberration at this bandwidth.

+ 5.5Measured Geometric Coma|C|= 1/6 NAZ |T| O At 0.08 NA,|C|/[T| = 1/6 0.08 = 0.001
waves per wave of tilt = 5.5 104 waves per fringelC| = 0.37 nm @ 50 fringeét 0.1 NA, |C|/[T| =
1/6 0.2 = 0.0017 waves per wave of tilt = 8:3.04 waves per fringelC| = 0.56 nm @ 50 fringes.

* 5.6 DetectorMisalignment. P-V astigmatismA = syNA2 0 ~0.47 nmf tilt. Also, AlyNginge = A
NA/2 = 0.54 nmf tilt/fringe. The measured Zernike cdiefent of astigmatism is half of this, or 0.27
nmpP tilt/fringe.

« 5.7 ShearAngle. 8 = Nd = shear angled = grating pitch3 = half-angle over which reference wave
front is of arbitrarily high qualitya = NA. Minimum requirement > 6 + a.

« 5.8 Grating Fabrication Errors. Recommendatioruse thdfirst-order refeenceconfiguration when
ever grating fabrication error magnitudes are unknown, or are known to be comparable with the
desired accuracy

+ 5.9 Grating Coma.|C|= 1/9 NA2 [T|= 3.6x 104 waves per fringelC| = 0.19 nm @ 40 fringes.
¢ 5.10 Spatial Filtering. Highest spatial frequency f s#A/NA) cycles 00 12 cyclegim filter width.

« 5.11 Filter Design.Place pinholes at 9@&djacent to a square window to enable direct measurements
of systematic décts. Separatelyadjust width perpendicular to beam separation to improve spatial
frequency response.

¢ 5.12 PlanarDetector Distortion. For 800-pixel measurement diamet@nd 0.08 NA, peak distortion
A=8.22x104 O 0.33 pixels.
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